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Outline
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Objectives and Motivation

 Development of scalable submodular optimization approaches to 
address observability and controllability in large complex systems via 
discovery of key entities

Motivation scenarios:

 Placement of sensors across a given large geographical area
 Placement of PMUs in a power network for maximizing observability

 Joint observability-controllability optimization to localize the spread of 
power outage via defensive islanding

 Observing nodes on social media to monitor opinions on a topic and 
identifying influential nodes to incentivize towards adoption of a 
specific behavior.



Submodular Functions

Consider a set of entities V. Let 𝑆𝑆 ⊆ 𝑉𝑉.  Let 𝑓𝑓 ∶ 2𝑉𝑉 → ℛ, be a mapping that 
associates every such S with a real number. 𝑓𝑓 is submodular provided it 
satisfies the following. 

For every  𝑆𝑆 ⊆ 𝑇𝑇 ⊆ 𝑉𝑉and any 𝑣𝑣 ∈ 𝑉𝑉, 𝑣𝑣 ∉ 𝑇𝑇 we have
𝒇𝒇 𝑺𝑺 ∪ 𝒗𝒗 − 𝒇𝒇 𝑺𝑺 ≥ 𝒇𝒇 𝑻𝑻 ∪ 𝒗𝒗 − 𝒇𝒇 𝑻𝑻

A function 𝑓𝑓 ∶ 2𝑉𝑉 → ℛ is monotone provided, for any 𝑆𝑆 ⊆ 𝑇𝑇, 𝑓𝑓 𝑆𝑆 ≤ 𝑓𝑓(𝑇𝑇)

We want to select the optimal subset called the seed set S such that 𝑓𝑓 𝑆𝑆 is 
maximized under a constraint on the cardinality of the seed set S i.e 𝑆𝑆 ≤ 𝑘𝑘. 

For this problem the simple Greedy algorithm works very well

Let 𝑆𝑆∗denote the optimal solution to the problem. If f is monotone submodular 
and 𝑓𝑓 𝜙𝜙 = 0, then due to a powerful result derived by Nemhauser et al. 

𝒇𝒇 𝑺𝑺 ≥ 𝟏𝟏 − 𝟏𝟏
𝒆𝒆
𝒇𝒇 𝑺𝑺∗
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Scalability: Two Pieces to Address
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Scale the greedy algorithm. Ordinary Greedy Algorithm : O(kn) oracle calls

Scale the computation oracle. 
Oracle Complexity : Varies between applications. 
Example : Sensor Placement :O(n3)



General Sensor Placement

 Assume that the quantity to be sensed can be modeled as a Gaussian 
Process with a given covariance function

 Given a set of ‘N’ possible sites distributed either spatially or over a network 
and given that the NxN co-variance matrix can be computed

 Given a budget of ‘k’ sensors, find the sites where the sensors need to be 
placed in order to maximize the observability

 Metric for the optimization: The metric that we consider is the mutual 
information between the sensed and the un-sensed locations 

 Given a set of locations where sensors are placed, the marginal gain in MI by 
adding a new element y to the set A is given by 



Initial Results
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Scaling

Quality

Ordinary Greedy: 3.6
Stochastic Greedy: 1.2
Covariance Build: 2.0



Network Scenario:  
Influence Maximization Problem
 A large class of natural and man-made systems with rich dynamics 

can be studied through the abstraction of graphs.

 Signals arrive at each node along the incoming edges, undergo (non-
linear) processing at the node and the processed signal is transmitted 
along the out-going edges.

 Given the models for node behavior and edge interactions and the 
objectives we are interested in, how can we find those influential 
nodes which have maximal impact on the system ?

 Applications in diverse fields 
 Viral marketing for product adoption 
 Spread of content on social media 
 Spread of diseases in contact-networks
 Keystone species in microbial communities
 Controllability and Observability in complex systems



Our Contribution: Inclusion of Intrinsic 
Activation
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Activation at each node is split into two 
mechanisms to allow correspondences 
to real-world situations

Intrinsic activation: Activation at each 
node attributable to its own intrinsic 
mechanisms

Influenced activation: Activation 
originating at each node attributable to 
influence of the neighboring nodes

Parameterize by the tendency towards 
intrinsic activation denoted by α and 
that towards influenced activation by β

Arun V. Sathanur and Mahantesh Halappanavar, 
“Influence Maximization on Complex Networks 
with Intrinsic Nodal Activation,” Social 
Informatics, Bellevue, WA, Nov 2016



Experiments on the Twitter network

Independent Cascade model over-estimates the number of activations

Ran the algorithm with three different alpha ranges and finally the scenario 
where the alpha values were set to be proportional to the node out-degree. 
The last one maximizes engagement.



Looking forward

 Distributed submodular optimization algorithms for even larger problems

 Online submodular optimization for real-time applications

 Working with domain experts to apply the algorithms to power grid 
applications at scale :
 PMU placement
 Controlled Islanding
 Synchronization

 Scalable algorithms for influence maximization
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Thank You
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