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Power Systems Control

Generator centered design since the origins
* Droop control: Rebalance supply-demand, resync gens., power sharing

* Frequency based negative feedback
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* Leverages synchronous generator’s natural behavior
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Dynamic Degradation
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In the United States:

said.

“While the three [contiguous] U.S. interconnections currently exhibit adequate
frequency response performance above their interconnection frequency
response obligations, there has been a significant decline in the frequency
response performance of the Western and Eastern Interconnections,” FERC

[FERC, Nov. 16]




Dynamic Degradation
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Causes

* Loss of inertia: due to both renewables and conventional gens M |

* Diminishing frequency dependent loads D |

* Lack of incentives: Droop Control in East US: 10% sustained. 30% w/thold. /2, T
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Dynamic Degradation

RTO Insider

Your Eyes and Ears on the Organized Electric Markets

CAISO m ERCOT = ISO-NE = MISO = NYISO = PJM = SPP

FERC: Renewables Must Provide
. Frequency Response —

November 21, 2016

By Rich Heidorn Jr.

In a rulemaking reflecting both reliability concerns and the technological
C a U s es advances of renewable generators, FERC on Thursday proposed revising the
pro forma Large Generator Interconnection Agreement (LGIA) and Small
. Generator Interconnection Agreement (SGIA) to require all newly
¢ LOSS Of ine I't interconnecting facilities to install and enable primary frequency response Z w \l,
capability (RM16-6).

* Diminishing -

L) J

* Lack of incentives: Droop Control in East US: 10% sustained. 30% w/thold. R, T




Inverter-based Control

Challenges

* Measurements with noise and delays
e Stability +robustness (plug & play)

e Lack of incentives

Current approach: Use inverter based control to mimic generators response
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Telecom Analogy

It works, but perhaps there is something better...



Inverter-based Control

Challenges

* Measurements with noise and delays
e Stability +robustness (plug & play)

* Lack of incentives

Our approach: Develop a modeling and analysis framework for systematic design
of gird-connected inverter-based control

m_Dynamic Droop Control (iDroop) Design Objectives:
4 | = I * Exploit power electronics capabilities
* Improve Dynamic Performance

* Minimize steady-state effort

* Stability and Robustness to delay

and noise (plug & play)

iDroop Controller




Outline

= Modeling Framework

= Network Model and Performance Metrics

= Evaluation of Existing Solutions

= Dynamic and steady-state coupling

= Dynamic Droop Control (iDroop)

= Decoupling steady-state and dynamic performance
= Stability and robustness



Power Network Model
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Bus and Network Dynamics

Generator Dynamics

Bus Dynamics Dj * Example: Swing Equations
generator . _q
+ freq:f,fncy . Miwi = —(Di + Rg,i )wi +x; + up,;
uPi—»O—| @ 9i - o,
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—1\—1
. gi(s) = (Mis+ D + R ;)
: C; |[+—Oe+—Wu, .
vertor : +  noise Inverter control: Dynamic Droop
power injection  inverter

Ti(s) = ci(s)(wi(s) + Ww,i(8))

Droop Control:  ¢;(s) = — R} lci(iw)|aB
—1
Virtual Inertia:  ¢i(s) = —(vis + RT_}) R : \
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Bus and Network Dynamics

Generator Dynamics

Bus Dynamics P * Example: Swing Equations
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Network Dynamics N

pe=(pe.i) 1 w=(w) .
~—A —Lp — Network Dynamics
e;c\:h’;zf 8 frequency .
0 =uy :=w

N Pe :LBH




Sy

Performance Metrics
Steady-state Performance

SS-Cost:
In steady state z; = ¢;(i0)w

*

T} ¢;(i0)

? —

Imbalance Z?’:l c;(i0) + Rg_,;

E.g.: Virtual Inertia and Droop Control
T = —R;’ilw*

—1
x; Rr,i

Imbalance 2?21 R 31 + R, ;

[Zhao “14. Li 16, M "4, ]

Dynamic Performance
Dyn-Cost:

IGII3,, = Jim E

Z wi(t)2]

with while noise disturbances:

Elwy, (1) w, ()] = k26(t — 7)1 (freq. noise)

Elwp(t) wp(t)] = k%6(t — 7)1 (demand dist.)

wi (t

| lJl

il

[Tegling "15, Poolla et al *15, Gurnberg *16, ... ]

Question: Can we tune independently Dyn-Cost from SS-Cost?



Outline

= Modeling Framework

= Network Model and Performance Metrics

= Performance Evaluation of Existing Solutions

= Dynamic and steady-state coupling

= Dynamic Droop Control (iDroop)

= Decoupling steady-state and dynamic performance
= Stability and robustness



Performance Evaluation

Qualitative illustration with homogeneous parameters:
Ryi=r,, Ryi=ry, Di=d, M;=m, v;=v
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[Tegling et al. "15, Poolla et al *15, Gurnberg et al. 16, Simpson-Porco et al. “16....]

A; = ifeigenvalue of L



Performance Evaluation

Qualitative illustration with homogeneous parameters:
Ryi=r,, Ryi=ry, Di=d, M;=m, v;=v
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Performance Evaluation

Qualitative illustration with homogeneous parameters:
Ryi=r,, Ryi=ry, Di=d, M;=m, v;=v

Steady-state Ite] |2
% share Ha
Droop Control 7“;1 n (('ZCP)2 + (kTTT_l)z)
_ a1 _ _ _ _
ci(s)=—r, 'rgl—|—'r7,,1 2m(d+’rg L+ 7, 1)
) . —1
Virtual Inertia T,
ci(s)=—(vs +r71) 7“9_1 _|_Tr—1 00

Droop Control: Steady-state and dynamic performance depend on 7

Virtual Inertia: Unbounded noise amplification due to derivative term Vs

[Tegling et al. 15, Poolla et al 15, Gurnberg et al. '16, Simpson-Porco ‘16,... ]



Outline
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iDroop: Dynamic Droop Control

Ourinitial try: Instead of ...

Virtual Inertia: x;,= —Rr,i_lwi — V;Ww; ci(s) = —(vis + Rr_zl)

les(iw)las]  Virtual Inertia

R;}/VZ log w



iDroop: Dynamic Droop Control

Ourinitial try: Instead of ...
1

3 s —_— . _1 ‘K/‘ .
Virtual Inertia: z,= —R,; w; — v;w; ci(s) = —(vis+ R, ;) Yan Jiang
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Optimal Performance Tuning

k% + (r tk,)?) s
Recall: |Gpe2, (1) = *Ep F e hr o
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SV

Theorem: If |Gpcl?, (v) < [|Gpell3, (') . thenforall § >0

|Giproop I3, (¥,0) < IGpellz, ()

Optimal when v* = \/(d+rg‘1)2 +k3/k2 —(d+r,"), 6°=0



Tradeoff: Power disturbances vs freq. noise

Bus Dynamics Pj
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Comparison

. . vs+ or; !
iDroop: &= —6 (1, 'w; + ;) — vy ci(s) = — s + 5T
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iDroop: Decouples steady-state and dynamic performance,
and improves dynamic performance



iDroop Stability 7 CV[ ot Dt fa)

- Bus Dynamics P;
dist. VP.iWPN generator
Challenge: O S e
How to guarantee (robust) stability in the \ _
presence of heterogeneous bus dynamics, i O e
unknown network, and measurement e TN S
delays. ( cils) = -2

Standard approach: Passivity
If pi(s) is strictly positive real (SPR):

Bus Dynamics

demand P = diag(p;) 0; > 0,v; >0, and Rr_ll > 0
dISt;;jzce Y4
o up e In fact, for unknown network ( L5 ), passivity
p_%r)T» pi is also necessary.
meston e
< Beyond passivity: pi € Hoo, and [Lpli < %
s ww-’£‘ If there exists h € H., such that sh(s) € PR
and Vi
o o h(s) (55 +pz-(s)) € SPR
siB T 0 Then, [P, N is stable

Network Dynamics decentralized, can be used to analyze delays, more... IFAC WC



Summary

=Develop a novel modeling and analysis framework for
inverter-based dynamic droop control design

=Study tradeoffs between steady-state and dynamic
performance

=Design Dynamic Droop (iDroop) control that can decouple
these metrics

"Provide decentralized stability guarantees using limited
network information
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