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1900s Murray Alternator with Belt-driven Exciter Generator

Power Systems Control

Generator centered design since the origins
• Droop control: Rebalance supply-demand, resync gens., power sharing
• Frequency based negative feedback
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Generator centered design since the origins
• Droop control: Rebalance supply-demand, resync gens., power sharing
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• Leverages synchronous generator’s natural behavior
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Dynamic Degradation

In the United States:

[FERC, Nov. 16]



Dynamic Degradation

Causes
• Loss of inertia: due to both renewables and conventional gens
• Diminishing frequency dependent loads

• Lack of incentives: Droop Control in East US: 10% sustained. 30% w/thold.
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Inverter-based Control

Challenges

• Measurements with noise and delays
• Stability +robustness (plug & play)
• Lack of incentives

Virtual Synchronous Generator

Controller

Telecom Analogy

It works, but perhaps there is something better…

Current approach: Use inverter based control to mimic generators response



Inverter-based Control

Challenges

• Measurements with noise and delays
• Stability +robustness (plug & play)
• Lack of incentives

Our approach: Develop a modeling and analysis framework for systematic design 
of gird-connected inverter-based control

Dynamic Droop Control (iDroop)

iDroop Controller

Design Objectives:

• Exploit power electronics capabilities

• Improve Dynamic Performance

• Minimize steady-state effort

• Stability and Robustness to delay 

and noise (plug & play)



Outline

§ Modeling Framework
§ Network Model and Performance Metrics

§ Evaluation of Existing Solutions
§ Dynamic and steady-state coupling

§ Dynamic Droop Control (iDroop)
§ Decoupling steady-state and dynamic performance
§ Stability and robustness
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Inverter control: Dynamic Droop
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Generator Dynamics
• Example: Swing Equations
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Performance Metrics

Steady-state Performance

In steady state

E.g.: Virtual Inertia and Droop Control

Dynamic Performance

with while noise disturbances:
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Outline

§ Modeling Framework
§ Network Model and Performance Metrics

§ Performance Evaluation of Existing Solutions
§ Dynamic and steady-state coupling

§ Dynamic Droop Control (iDroop)
§ Decoupling steady-state and dynamic performance
§ Stability and robustness



Performance Evaluation

Qualitative illustration with homogeneous parameters:
Rr,i=rr, Rg,i=rg, Di=d, Mi=m, ⌫i=⌫

[Tegling et al. ’15, Poolla et al ’15, Gurnberg et al. ’16, Simpson-Porco et al.  ‘16,… ]
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Performance Evaluation

n
�
(kP )2 + (krrr�1)2
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Qualitative illustration with homogeneous parameters:

Droop Control
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r

Droop Control: Steady-state and dynamic performance depend on rr

Rr,i=rr, Rg,i=rg, Di=d, Mi=m, ⌫i=⌫

[Tegling et al. ’15, Poolla et al ’15, Gurnberg et al. ’16, Simpson-Porco ‘16,… ]
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Performance Evaluation

+1

n
�
(kP )2 + (krrr�1)2

�

2m(d+ rg�1 + rr�1)

Qualitative illustration with homogeneous parameters:

Droop Control
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Virtual Inertia

Droop Control: Steady-state and dynamic performance depend on rr

Rr,i=rr, Rg,i=rg, Di=d, Mi=m, ⌫i=⌫
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r )

[Tegling et al. ’15, Poolla et al ’15, Gurnberg et al. ’16, Simpson-Porco ‘16,… ]

Virtual Inertia: Unbounded noise amplification due to derivative term �s
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iDroop: Dynamic Droop Control

Our initial try: Instead of …
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iDroop: Dynamic Droop Control
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Theorem: If                                                       , then for all             :

Optimal when

Optimal Performance Tuning

Recall: Yan Jiang
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Tradeoff: Power disturbances vs freq. noise
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Comparison

+1

Droop Control

ci(s)=�r�1
r

Virtual Inertia

n
�
k2

P + (rr
�1kr)2

�

2m(d + rg
�1 + rr

�1)

iDroop

ci(s) = ��s + �r�1
r

s + �

iDroop: Decouples steady-state and dynamic performance, 
and improves dynamic performance  

n(k2
P + (�kr)2)

2m(d + r�1
g + �)

, � � 1

iDroop: ẋi= ��
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iDroop Stability

Challenge:

How to guarantee (robust) stability in the
presence of heterogeneous bus dynamics,
unknown network, and measurement
delays.

Richard Pates

Standard approach: Passivity
If               is  strictly positive real (SPR):

In fact, for unknown network (        ), passivity 
is also necessary.

Beyond passivity:

If there exists                   such that                         
and 

Then,               is stable
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decentralized, can be used to analyze delays, more… IFAC WC

-
uP

P = diag(pi)

uN

Network Dynamics

Bus Dynamics

pe electric power

ω frequency

net bus
injection

1

s
LB

pin
constant
power
injection

wP

demand
disturbance

w!
freq.
noise

inverter

generator

up,i
+ !i

power 
imbalance

frequency

gi

piBus Dynamics

+

+ noise

+

xi
inverter 

power injection

ci
��,iw�,i

+

�P,iwP,i
power
dist.

�i > 0, �i > 0, and R�1
r,i > 0



Summary

§Develop a novel modeling and analysis framework for 
inverter-based dynamic droop control design

§Study tradeoffs between steady-state and dynamic 
performance

§Design Dynamic Droop (iDroop) control that can decouple 
these metrics

§Provide decentralized stability guarantees using limited 
network information
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