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Swiss Ancillary Market for Loads

Phase 1 : Bidding

Period Payment

Bid flexible capacity aa MW

Purchase baseline energy

Day-ahead market
Energy exchange




Swiss Ancillary Market for Loads
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A Bid is a Tracking Set

A bid of o MW is hypercube

aSE{(po,....pn) | —a < p < a}

... fine for generators, but demand-response is a virtual storage system

- A bid of 1MW requires a battery of 48 MWh! Impossible!

~225 KCHF / year ~24 mCHF

Components of a possible solution:
1.  Use multiple complementary devices
2. Provide the service that is requested, not the legally required one



Hybrid Storage Scheme Increases Available Capacity
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Battery Control

Key : Energy storage is very expensive

‘J :\( \W)»}MMW WP M
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Area Generation Energy Storage Clear Energy
Control to Building

Required Energy Storage

EE > 150kWh battery per 1MW capacity
AEK CHE ~225k CHF
/ year

0 0.05 0.1 0.15 0.2

Battery Size [MWh]
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Optimal Participation in the Intraday Market

Goal : Minimize energy stored in the building.

Forecast distribution >
(Gaussian Process) il Correlated to 2n Hourly peaks
© | -
o | ©
AL PRIV WP W
Frequency
in Z E[r] Challenges
» Market delay
Goal : Minimize St fig1 =1 + Z aj+ m(ri—q) « Uncertain
energy stored constraints
in building E [Z i ”(”—d)] sV
T X
Area. Control action :
Generation
Purchase / sell
Control .




Remove the Mean via Intraday Trading

—— AGC Signal
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Reduced Energy Requirements from Intraday Trading

Raw AGC signal - AGC after intraday trades

= 99t percentile = 99t percentile

g 4.5MWh / MW g | Wh 1.6MWh / MW

O O

i \/ i /
o 1 2 3 4 5 6 o 1 2 3 4 5 6
Virtual Building Storage [MWh/MW] Virtual Building Storage [MWh/MW]

Required virtual energy storage in buildings:

4.5 MWh / MW offered 1.6 MWh / MW offered
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Hybrid Storage Scheme Increases Available Capacity
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Bidding Problem — Convex Robust Optimization

Maximize capacity — %

payment o

max o — Z cost; - e

4 Minimize energy
costs e

Every battery trajectory st QT ¢ C 680 Comfortable building
feasible for building power trajectories

All energy trajectories
up to 1.6 MWh / MW

C(x0) =< (Po, .- Pn—1)

2

B= ¢ (po. ... ow)
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Sit1 = Si + pi )
So =20

si| < 1.6 >
pil <1 )

\

Xi 1 = Aixi + Biu; + b; | Feach-set of building

> defines all comfortable
trajectories

/

. openBuild toolbox extracts
time-varying linear model from E+ model
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Laboratoire d’Automatique Demand Response
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Single Building Can Track AGC — No Intraday Trading
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Offered capacity : 45% of peak building power consumption




Intraday Trading Improves Comfort and Capacity

Baseline (black)
+
Intraday (purple)

Excellent
occupant
comfort

AGC
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Time[h]

Intraday trading results in a 30% increase in capacity




LADR : Intraday Trading Increases Capacity

Week-by-week comparison with and without intraday trading.

10 week-long
Increase in capacity bid [%] experiments run in
50 early 2016
®
o
®oe0
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o
0
-15 -10 5 0 5 10 15
Improvement in comfort [%]

-25
-50

Result Intraday scheme increases comfort and capacity income
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Campus Scale Experiments

— Controllable ~

LADR
12% total load 350 kW

, éwwmw ﬂ
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Leclanché battery

550 kWh / 720 kW PV Panels
N J N J
Collaboration with DESL

[Fabietti, Gorecki, Namor, Sossan, Paolone & Jones IEEE CCTA, 2017] 21




God Predi

onsumption

. | : Dispatch plan
AA‘MM (Dlack)
|

Power[kW]

SOC percentage [%]

ction Day — Battery O

—— — — — — — —

| Prosumer
| consumption (red)

SOC reference

.

Battery easily

17-12 00:00 17-12 06:00

17-12 12:00

17-12 18:00

(SOC)

compensates for
EREXGIOE prediction errors



Good Prediction Day — Battery & LADR
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Poor Prediction Day — Battery Only
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Poor Prediction Day — Battery & LADR
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Impact of Building Size — Preliminary Conclusion

Required Battery Capacity [kWh]
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Minimum Cost Control is Bad for Demand Response
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Implication : Demand-response + optimal control = discomfort + penalties



Loads Must Pay to Participate
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Implication : A building has to pay to participate in DR




Annual Cost of Building Operation
Additional
baseline

Tracking o !
for DR \ '2222;{’ energy Capacity Building paid
4% 1% income
,,,,,,, [
Intraday
trades
1
No demand
response < Cost with
> demand
response

Result Demand response results in 26% reduction in operating costs

‘Assumption : Battery lasts for 5 years .,



Demand Response has Strong Comfort Benefits

Current operation
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Result Demand response results in a more comfortable building from

increased baselines and a reduced cost from capacity payments
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Conclusion

How can buildings
provide fast
regulation
services”?

|s there a business
case in the current
Swiss market?




