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Need for Storage

Main challenge of renewables:
* They are uncertain and intermittent

Energy Storages
* Act as buffers to smooth out these uncertainties

Focus on electrochemical batteries
* Lithium-ion

 Lead acid

* Flow cell

« efc...
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Electrochemical Batteries

* Mature technology
— Both large and small scale batteries

* Flexible and rapid deployment
— Geographically unrestricted
— Small land-use

* Decreasing cost
— Lithium-ion: 800$/kWh in 2012 to 250%/kWh in 2017

This talk: optimal operation under realistic electrochemical
models
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Operation of Batteries w

Planning i Scheduling i Operations
Investment Day-ahead Real-time
’ charge
! discharge
battery exogenous signal
Applications:

* Regulation, price arbitrage, peak shaving,...
Control Problem:

« Determine the real-time charge/discharge power
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Real-time Control of Batteries w

I charge
! discharge

battery exogenous signal

max Utility — Cost «<—— degradation of battery

PminSPtSPmaX
t

Z PT — SOCt
— coupling constraints

SoChin < SoC; < S0C1ax

Hard problem:
* Future is unknown
« Degradation is complicated 4/33



Optimal Control of Batteries W

Optimal online control of batteries is in a hard problem

« Many negative results in optimal control and online
optimization literature

Contribution: under some situations, we show
* Near-optimal online algorithm
« Constant gap to the off-line optimal

Realistic degradation models make the problem easier
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Outline W

1. Optimization problem for fast regulation
2. Cycle-based degradation cost
1. Threshold algorithm

2. Sketch of the proof
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Regulation Problem
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« A signal r, send every 4 seconds, battery power

Injection P, tries to follow it -

profit = capacity payment — Z e — Py
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Y

focus of real-time control
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Real-time Optimization Problem
« Optimization problem
min Z 7y — Py| + cost

t

PminSPt Spmax
t

Z PT = SOCt

T=1

SOCmin S SOCt S SOCmaX

« Trade-off between the penalty and the battery
operation cost

* The future regulation signals r, are unknown
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Performance Metric W

* For a given feasible sequence P,,P,,...,P+, define

T
f(P;r) = Z Iy — P;| + degradation cost
t=1

* Regret
regret = f(P;r) — mgn f(P;r)
Use only historical information Full information

« What is the worst case regret?
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Battery Degradation w

« Batteries degrades with each charging and
discharging operation

1] |

capacity loss

* For example, Li-ion battery can undergo about 400-
1500 cycles before end of life

* The operation cost of batteries
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Degradation Cost

« Batteries degrade because of
— Charging voltage and current (instantaneous)
— Charging profile
— Temperature
— Calendar life
— Many others...

« There are electrochemical equations to describe
these processes
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“Reduced” Model

* Reduced order PDEs for Li-ion degradation

Governing equation

Boundary conditions
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Power-based Approximation W

» Degradation is proportional to the power P,

—

t

Degradat
Degradation cos
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Degradation o [F| Degradation oc Py

Advantages: simple

Disadvantages: only suits a few kinds of battery
within certain SoC ranges
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Optimization Problem

min Z 7y — P| + ZPE
t t

PminSPtSPmaX

t
Z PT — SOCt
=1
SOCmin S SOCt S SOCmaX

« This is similar to a constrained LQG problem
« Long-standing open problem
« The power-based degradation model is neither
accurate nor computational efficient
There is a model that is both more accurate
and easier to optimize
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Degradation w

SoC 1. Degradation

SoC 2:

t=0 =1 t=2 t=3 =4
Same Power-based degradation
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Cycle-based Degradation W

« Count cycles instead of power
« A deeper cycle degrades the battery more than many

small cycles
AS0C N
charging Cycle ’ cost = E (I)(dz)
7 =1

®(-) cycle stress function
e.g. ®(d;) =aexp(b-d;)
/" discharging Cycle d17 Cel dN Cycle depth

Time
>

Electrochemically more accurate for
power system applications
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Rain-Flow Counting w

e Counting heterogenous cycles systematically: rain-flow
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Rain-Flow Counting
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Rain-Flow Counting

Turning Point
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Optimization Problems

Power-Based Cost
min Z 7y — Py| + ZPE
t t

PminSPtSPmaX

, Hard

Z PT = SOCt

=1

SOCmin S SOCt S SOCmaX

Cycle-Based Cost
N
min Z 7y — Py| + Z o (d;)

t 1=1
PminSPtSPmaX Easy

t .
S Py = SoC, Decompose according to cycles
T=1

SoCmin < SoCy < SoChax
dy,...,dy = rainflow(Py,..., Pr)
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Results

SOCmin S SOCt S SOCmaX
di,...,dy = rainflow(Py,..., Pr)

Result:

Worst-case regret is a constant, independent of
the time period length T
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Intuitions

« Suppose we know which cycle we are in
« Attimet, solve ASoC

min Tt _Pt —|—(I)(df_1 +Pt)
Pmin Spt Spmax
SOCt_l + Pt < SOCmaX

* Optimal solution

P = max(rs, P) Time
where P = ¢(S0Cmax, Pmax, ®)

* Future information doesn’t matter if each time step is
small enough (battery controller operates in
milliseconds timescale)
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Online Cycle Tracking w

« Keep track of which cycle the battery is operating on

ASoC

charging Cycle

Time
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Online Algorithm w

1. Attime t, figure out the cycle currently operating in

2. Look at the historical profile associated with that
cycle

3. Apply thresholds

Thresholds
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Optimality W

Important facts
1. Historical traces are monotonic in each cycle

2. Cycles decouple
3. Full information problem is convex

Online threshold policy is off-line optimal (zero regret) if
the charge/discharge have the same efficiency
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Inefficiencies W

« Some batteries have different charge/discharge
efficiencies

* Need to balance charge/discharge amount

ASoC

unbalanced

balanced SoC,.i,
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Inefficiencies W

« Some batteries have different charge/discharge
efficiencies

* Need to balance charge/discharge amount

One charge or discharge cycle maybe unbalanced
« Creates a gap between online and offline

« But there is at most one such cycle over an entire
time period: constant gap
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Simulation Setup
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« PJM market signal, 1MW capacity bid

« Battery degradation cost calculated as amortized
capital cost

« Empiric data used to find degradation functions
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Simulation Results

Total utility
Regulation payment
Modeled battery deg.
Actual battery deg.

Life expectancy (month)

176

338.9

162.9

175

22.1

137.9

438

207.2

300.2

12
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Conclusion w

« Considered online control of battery systems

* Realistic degradation models actually make the
problem easier

* Near-optimal online control
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