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Decisions under uncertainty
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Decisions under uncertainty
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Decisions under uncertainty
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Need for reliable
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Outline

d The AC Optimal Power Flow (OPF) problem



General AC OPF model

min J(x) guadratic cost of generation
€T
subject to
9(27 5f) — 0 power flow equations
Y

h(z, 5f) < (Q  operational limits

:33 voltage magnitude and angle

07 wind power forecast
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OPF challenges

. Nonconvex constraints

* Needto be applied in large networks

Different solution methodologies aim to find an
approximate solution, a local minimum or
ideally the optimal solution in a scalable
manner
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OPF solution methodology examples

« Approximations
DC OPF: linearized power flow equations - quadratic problem
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OPF solution methodology examples

* Finding the global optimum
Convex Relaxations: Semidefinite program (SDP), Second order
cone program (SOCP)
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OPF solution methodology examples

* Finding a local minimum
AC-QP OPF : Quadratic program (QP) formulation - separate AC
power flow based update
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AC-QP OPF algorithm

Run initial power flow

l

: Converged?
Solve QP with latest > Run AC power Flow Difference in QP- Yes
power flow solution using QP solution power flow solutions End
A < tolerance

* Initialize the AC power flow using an SCOP solution
« SOCP provides a lower bound of the OPF problem

[A. Wood, B. Wollenberg, and G. Sheble, Power Generation, Operation and Control, 3rd ed. John Wiley and Sons, Inc., 2013]
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Outline

(d Stochastic AC OPF formulation



Steady state operating points

Given a generation-load mismatch
the automatic control loops will
lead to a new post-disturbance
operating point

50.065 Hz
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Steady state operating points

Satisfy the constraints at the steady state point after

_ pf
* Primary control P = Pg —dp AP,
e AGC response (secondary control) o = P(J; —ds AP,

* aredispatch action (or tertiary control) PL(AP,)
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Optimal decision making under uncertainty
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\ time
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Chance Constrained OPF

min J(x) min J(z)
subject to subject to
fy
g(x,87) =0 P(5 € RN | g(2,6) = 0,
h(x,5f)§O h(z,0) <0)>1—¢

Satisfy the constraints in a probabilistic sense
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Chance Constrained OPF

min J(x) min J(z)
subject to » subject to
fy
9(337(S ) =0 ]P’(5€]RN“’ | g(x,0) =0,
h(:l?,5f)§0 h(z,0) <0)>1—¢

Solve the chance constraint using data-based optimization
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Data-based optimization

The scenario approach [1]
* No assumptions on the underlying distribution of the uncertainty

* Guarantees a-priori that the chance constraint will be satisfied with a certain

confidence
* Requires convexity with respect to decisions variables

Probabilistically robust design [2]
* Mixture of randomized and robust optimization
* No assumptions on the underlying distribution of the uncertainty
e Guarantees a-priori that the chance constraint will be satisfied with a certain

confidence
* No particular structure required with respect to the decision variable

The non-convex scenario optimization [3]
* No assumptions on the underlying distribution of the uncertainty

* Applicable to con-convex problems
* Provides a-posteriori guarantees
P & [1] G. Calafiore and M. Campi, TAC, 2006

[2] K. Margellos, P. Goulart and J. Lygeros, TAC, 2014
[3] M. C. Campi, S. Garatti, F. A. Ramponi, CDC, 2015
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Data-based optimization

The scenario approach [1]

* Substitute the chance constraint with a finite number of
hard constraints based on scenarios of the uncertainty

P(5 € RN | h(z,6) <0)>1—¢ o

1 ’ e 060 = >

h(il?,dl) <0 fori=1..N %o

* How many scenarios do we need to provide probabilistic
guarantees?

. NZii(ln%+Nx—1)

“]‘jmber _ 2’ ‘\ \__ number of
o1 SCEnATIos  violation confidence decision elements
ACC 2017

level

Chance-constrained AC OPF with probabilistic guarantees



Data-based optimization

Probabilistically robust design (two-step approach) [2]

m Step1l
e Use the scenario approach to find ‘bounds’ of the 5,
uncertainty elements 1
* How many scenarios do we need to provide °
probabilistic guarantees? ° ® o
© o0 s
1 e 1 ° ° ® o o1
N =>-—\{In=-+2Ns — 1 O
g ce—1 15 e °
number ) \ \ o
of scenarios ;/eisz:lltion " onfidence number Of
uncertainty
elements
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Data-based optimization

Probabilistically robust design (two-step approach) [2]

m Step1l
e Use the scenario approach to find ‘bounds’ of the 5
uncertainty elements 2 4
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© oo S
1 e 1 O ° o o1
N =>-—\{In=-+2Ns — 1 O
g ce—1 15 p °
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Dealing with the chance constraint

Probabilistically robust design (two-step approach) [2]

m Step 2
* Solve a robust reformulation of the 62 4
initial chance constrained problem
R ®
. .

* Any solution of the robust problemis
fea5|.ble for the chance constrained with e oo >
confidence atleast 1 —f

P(s € RN | h(z,6) <0)>1—¢ /

! A

h(il?,5) <0 forall 0 €Ay
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Prior work

DC power flow

* Using active power policies P& = Pl —d, AP,
allow to trivially satisfy the equality
constraints and the problem can be

Fails to satisfy the
desired violation level

forecast-based dispatch

,, .
tractable » o
. . ’\ ]
« Methods [1] and [2] were efficiently N e e o
or \ -
used Y o) /% X
. 04F I (] ! I .
* But solution not accurate for the AC o §olo ‘/o\ B N
. LT ! < \ Y
constraints reocoded! . . . .oes

robust dispatch

0.08
IEEE 30-bus network
= 4 load profiles 006 _ « - S.atISfl.eS the desired
. . . y \ violation level
= Desired violation level 10% 004t Vo 1
‘',
= Monte Carlo evaluation for 10000 wind power ., YA i
i ; . AT L I
realizations gt s s L BTTIRITR LTy
2 4 6 8 10 12 14 16 18 20 22 2"4

time (hours)

[M. Vrakopoulou, K. Margellos, J. Lygeros, and G. Andersson, “Probabilistic guarantees for the N-1 security of systems
with wind power generation,” in PMAPS 2012]
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Prior work

280

AC power flow : ]
g

-§ 240+
e SDP formulation, active power and -
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generator voltage policies need to 248 8 N T et
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£
|
w
!
;

* Method [2] was applied ’
* But scalability issues!!

Wind power [MW]
S
o

E

span of evaluation scenarios
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o
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[M. Vrakopoulou, M. Katsampani, K. Margellos, J. Lygeros, and G. Andersson “Probabilistic security-constrained AC
optimal power flow,” in IEEE PowerTech Conference, 2013]
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Data-based optimization

The non-convex scenario optimization [3]

* Use N scenarios as an input to the non-convex optimization algorithm

e Calculate the support scenarios k of the obtained solution
* Provides a-posteriori guarantees for the upper bound of chance constraint

violation level €

1. if k=N
e(k) =

1 — Nk BN otherwise

N(y)

3 € (0,1), a design parameter representing the probability
that the upper bound € will be violated

[3] M. C. Campi, S. Garatti, F. A. Ramponi, CDC, 2015
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Data-based optimization

Support scenarios

Non-convex e
e . e M §
N algorithm N
k Non-convex

algorithm LN

Can we find a small number of scenarios k that must be included in the
problem so that the solution would be the same as the one using all the N
scenarios?
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Stochastic AC-QP OPF

-Rank N Wind Scenarios Solve AC-QP pOPF Run AC Power
according to —>{ with k scenar:)os —>| Flows for all
N Scenarios
Z (Pz:)rfz o Pw,z')
€W
-Set k=1

-Re-rank those
scenarios with
constraint violations

-k =k+1

Constraint
violation in

End |«

[J. F. Marley, M. Vrakopoulou and I. A. Hiskens, An AC-QP optimal power flow algorithm considering wind forecast
uncertainty, IEEE PES Innovative Smart Grid Technologies, ISGT-Asia 2016]
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Scenarios in the OPF

Given a set of possible wind scenarios, S:
min C(Pgz) €« (Quadratic) Cost of Conventional Generation
subject to
g(x) < 0 « Operational Limits & Line Flow Constraints
h(x) = 0 « (AC) Power Flow Equations
Vm e S:

g(x,x™) < 0 « Operational Limits & Line Flow Constraints

h(x,x™) =0 « (AC) Power Flow Equations
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Case studies

Test the stochastic AC-QP algorithm for the following IEEE benchmark
networks:

14-Bus: 5 Generators, 20 Branches, 2 wind buses

30-Bus: 6 Generators, 41 Branches, 5 wind buses

57-Bus: 7 Generators, 80 Branches, 7 wind buses

118-Bus: 54 Generators, 186 Branches, 10 wind buses

N=1500 scenarios
B=0.001
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Increasing the network size

©
T

(00)
T

\l
T

(o))
T

[6)]
T

SN
T

Number of Support Scenarios in AC-QP pOPF
w
*

\e}
T

—_ - *
\ 70 -
} | ¥
| 60 [ .
| 3 |
| 18 |
| S50 |
1 | E :
|_
C
S40f
* 4 3 \
(0]
|.|>j \
630* \
* T T -'6 I
\ = | g
\ 20 | *
- ‘ 4 "
| i —
* | 10 - ——— L "
57 118 14 30 57 118

14

ACC 2017

30

Chance-constrained AC OPF with probabilistic guarantees




1ze

ing the network s

Increas

* sohk ok if\\\l #
Il Il Il Il Il Il
o) < ™ o\ — o
o o o o o

118

57

30

14

T T T T

| | |

|

118

57

30

14

< 0 ()

45

(¢p]
uone(oIA Jo ANjigeqold [eonaio

Lo
a

oyl

Chance-constrained AC OPF with probabilistic guarantees

ACC 2017



Increasing the number of scenarios N

g (a) 14 Bus with 2 Wind Nodes: AC-QP Cost
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Increasing the number of scenarios N

14 Bus w/ 2 Wind: Theoretical & Empirical Probability of Violation Difference
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Conclusions

The AC-QP OPF method has been extended to include wind power
uncertainty, through the addition of a finite number of wind scenarios.

The resulting stochastic AC-QP OPF algorithm offers several advantages:

* It does not rely upon model approximations and produces an AC feasible
solution.

* |t provides a probabilistically robust solution with a-posteriori
probabilistic violation guarantees.

* The number of support scenarios remain small as the problem size
increases highlighting promising scalability properties
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