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stochastic	Optimal	Power	Flow formulations
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General	AC	OPF	model

subject to

quadratic cost of generation

power	flow equations

operational	limits

voltage magnitude and angle

wind	power	forecast
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OPF	challenges
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• Nonconvex	constraints

• Need	to	be	applied	in	large	networks

Different solution methodologies aim to find an 
approximate solution, a local minimum or 
ideally the optimal solution in a scalable 
manner



OPF	solution	methodology	examples
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• Approximations
DC OPF: linearized power flow equations - quadratic problem

• Finding the global optimum
Convex Relaxations: Semidefinite program (SDP), Second order  
cone program (SOCP)

• Finding a local minimum
AC-QP OPF : Quadratic program (QP) formulation - separate AC 
power flow based update  
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AC-QP	OPF	algorithm
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[A. Wood, B. Wollenberg, and G. Sheble, Power Generation, Operation and Control, 3rd ed. John Wiley and Sons, Inc., 2013]

• Initialize the AC power flow using an SCOP solution
• SOCP provides a lower bound of the OPF problem
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Steady state operating points

Given	a	generation-load	mismatch	
the	automatic	control	loops	will	
lead	to	a	new	post-disturbance	
operating	point

Pre-disturbance
operating point

Post-disturbance
operating point

source:	swissgrid

Example:	Frequency control
Safe	region

Primary													Secondary Tertiary
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• AGC	response	(secondary	control)

Satisfy	the	constraints	at	the	steady	state	point	after	

• a	redispatch action	(or	tertiary	control)

• Primary	control

Steady state operating points



Optimal	decision making under uncertainty
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source:	swissgrid

time
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• Optimal	decisions
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• Historical	data of
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• Apply the optimal	
decisions

• Realization of the
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Intra-day market
hours before
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Optimal	decision
making

Apply in	real	
time
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Chance	Constrained	OPF

subject to
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subject to

Satisfy	the	constraints	in	a	probabilistic	sense



Chance	Constrained	OPF

subject to
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subject to

Solve	the	chance	constraint	using	data-based	optimization



The	scenario	approach	[1]
• No	assumptions	on	the	underlying	distribution	of	the	uncertainty
• Guarantees	a-priori	that	the	chance	constraint	will	be	satisfied	with	a	certain	

confidence
• Requires	convexity	with	respect	to	decisions	variables

Probabilistically	robust	design	[2]	
• Mixture	of	randomized	and	robust	optimization
• No		assumptions	on	the	underlying	distribution	of	the	uncertainty
• Guarantees	a-priori	that	the	chance	constraint	will	be	satisfied	with	a	certain	

confidence
• No	particular	structure	required		with	respect	to	the	decision	variable

[1] G. Calafiore and M. Campi, TAC, 2006
[2] K. Margellos, P. Goulart and J. Lygeros, TAC, 2014
[3] M. C. Campi, S. Garatti, F. A. Ramponi, CDC, 2015

Data-based	optimization
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The	non-convex	scenario	optimization	[3]
• No		assumptions	on	the	underlying	distribution	of	the	uncertainty
• Applicable	to	con-convex	problems
• Provides	a-posteriori	guarantees



• Substitute	the	chance	constraint	with	a	finite	number	of	
hard	constraints	based	on	scenarios	of	the	uncertainty

• How	many	scenarios	do	we	need	to	provide	probabilistic	
guarantees?

The	scenario approach [1]

number of
decision elementsconfidence
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Data-based	optimization
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• Use	the	scenario	approach	 to	find	‘bounds‘	of	the	
uncertainty	elements

• How	many	scenarios	do	we	need	to	provide	
probabilistic	guarantees?

Step	1

number of
uncertainty
elements

confidence
violation
level

number
of scenarios

Probabilistically robust	design	(two-step approach)	[2]
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Data-based	optimization
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Step	2

• Solve	a	robust	reformulation	of	the	
initial	chance	constrained	problem

• Any		solution	of	the	robust	problem	is	
feasible	for	the	chance	constrained	with	
confidence	at	least	

for	all 𝛿 ∈ ∆8

𝛿#

𝛿/

∆8

1 − 𝛽

Dealing	with	the	chance	constraint
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Probabilistically robust	design	(two-step approach)	[2]



Prior	work
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[M.	Vrakopoulou,	K.	Margellos,	J.	Lygeros,	and	G.	Andersson,	“Probabilistic	guarantees	for	the	N-1	security	of	systems	
with	wind	power	generation,”	in	PMAPS	2012]

DC	power	flow
• Using	active	power	policies		

allow	to	trivially	satisfy	the	equality	
constraints	and	the	problem	can	be	
tractable

• Methods	[1]	and	[2]	were	efficiently	
used

• But	solution	not	accurate	for	the	AC	
constraints

Fails	to	satisfy	the	
desired	violation	level	

Satisfies	the	desired	
violation	level	

§ Monte	Carlo	evaluation	for	10000	wind	power	
realizations	

IEEE	30-bus	network	
§ 4	load	profiles	
§ Desired	violation	level	10%	



Prior	work
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[M.	Vrakopoulou,	M.	Katsampani,	K.	Margellos,	J.	Lygeros,	and	G.	Andersson “Probabilistic	security-constrained	AC	
optimal	power	flow,”	in	IEEE	PowerTech Conference,	2013]

• SDP	formulation,	active	power	and	
generator	voltage	policies	need	to	
be	used	to	make	the	problem	
tractable.

• Method	[2]	was	applied
• But	scalability	issues!!

AC	power	flow	

IEEE	14-bus	network	
§ Desired	violation	level	10%
§ Monte	Carlo	evaluation	for	10000	wind	power	

realizations	



Data-based	optimization
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The	non-convex	scenario	optimization	[3]

• Use	N	scenarios	as	an	input	to	the	non-convex	optimization	algorithm
• Calculate	the	support	scenarios		k of	the	obtained	solution	
• Provides	a-posteriori	guarantees	for	the	upper	bound	of	chance	constraint	

violation	level								

[3] M. C. Campi, S. Garatti, F. A. Ramponi, CDC, 2015
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Non-convex	
algorithm

Data-based	optimization

Support	scenarios

Non-convex	
algorithm

k

Can	we	find	a	small	number	of	scenarios	k	that	must	be	included	in	the	
problem	so	that	the	solution	would	be	the	same	as	the	one	using	all	the	N	
scenarios?		
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Stochastic	AC-QP	OPF

[J.	F.	Marley,	M.	Vrakopoulou	and	I.	A.	Hiskens,	An	AC-QP	optimal	power	flow	algorithm	considering	wind	forecast	
uncertainty,	IEEE	PES	Innovative	Smart	Grid	Technologies,	ISGT-Asia	2016]
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Scenarios	in	the	OPF
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Case	studies
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Test the stochastic AC-QP algorithm for the following IEEE benchmark
networks:

• 14-Bus: 5  Generators, 20 Branches, 2 wind buses

• 30-Bus: 6  Generators, 41 Branches, 5 wind buses

• 57-Bus: 7  Generators, 80 Branches, 7 wind buses

• 118-Bus: 54  Generators, 186 Branches, 10 wind buses

N=1500	scenarios
β=0.001
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Increasing	the	network	size
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Increasing	the	network	size
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Increasing	the	number	of	scenarios	N
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Conclusions

The	AC-QP	OPF	method	has	been	extended	to	include	wind	power	
uncertainty,	through	the	addition	of	a	finite	number	of	wind	scenarios.

The	resulting	stochastic	AC-QP	OPF	algorithm	offers	several	advantages:	

• It	does	not	rely	upon	model	approximations	and	produces	an	AC	feasible	
solution.

• It	provides	a	probabilistically	robust	solution	with	a-posteriori	
probabilistic	violation	guarantees.

• The	number	of	support	scenarios	remain	small	as	the	problem	size	
increases	highlighting	promising	scalability	properties
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Thank	you	for	your	attention!

mariavr@berkeley.edu


