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 Part I: Mean Field Game for Large Scale DER Coordination

 Background

 Main results: Mean field Game vs. social welfare optimization

 Numerical Example

 Extension to  Nonconvex Case

 Part II: Cross-Layer Design of DER Coordination via Aggregate Load 
Modeling
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……

Agent 1 Agent 2 Agent N

Coordinator

 DERs in future power grid:  opportunities + challenges

 Users and stakeholders of DERs are self-interested

 Coordination strategies must respect users’ preferences and 
possibly strategic behaviors  

 Opt-out from the program

 Game the system
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Background
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 Classical game theory has been widely used in power systems

 Emerging challenges: 

 Potentially large number of DERs

 DERs typically have nontrivial dynamics

m𝑎𝑥
𝑢1

𝑈1 𝑢1, 𝑢2, … , 𝑢𝑁

𝑢1 ∈ 𝑈1 Agent 1

m𝑎𝑥
𝑢𝑖

𝑈𝑖 𝑢1, 𝑢2, … , 𝑢𝑁

𝑢𝑖 ∈ 𝑈𝑖 Agent 𝑖

m𝑎𝑥
𝑢𝑁

𝑈𝑁 𝑢1, 𝑢2, … , 𝑢𝑁

𝑢𝑁 ∈ 𝑈𝑁 Agent 𝑁
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From Game to Mean-Field Game
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 Often times, “weak” coupling depends only on aggregate effect

 Mean-field game theory can simplify the analysis of the game 

m𝑎𝑥
𝑢1

𝑈𝑖 𝑢1, 𝚺𝒋𝒖𝒋

𝑢1 ∈ 𝑈1 Agent 1

m𝑎𝑥
𝑢𝑖

𝑈𝑖 𝑢𝑖 , 𝚺𝒋𝒖𝒋

𝑢𝑖 ∈ 𝑈𝑖 Agent 𝑖

m𝑎𝑥
𝑢𝑁

𝑈𝑖 𝑢𝑁, 𝚺𝒋𝒖𝒋

𝑢𝑁 ∈ 𝑈𝑁 Agent 𝑁

(𝑢1
∗ , … , 𝑢𝑁

∗ ) is 𝝐-Nash equilibrium if  𝑈𝑖 𝑢𝑖
∗, 𝑢−𝑖

∗ ≥ 𝑈𝑖 𝑢𝑖, 𝑢−𝑖
∗ − 𝝐, ∀ 𝑢𝑖 ∈ 𝑈𝑖

(𝑢1
∗ , … , 𝑢𝑁

∗ ) is Nash equilibrium if  𝑈𝑖 𝑢𝑖
∗, 𝑢−𝑖

∗ ≥ 𝑈𝑖 𝑢𝑖 , 𝑢−𝑖
∗ , ∀ 𝑢𝑖 ∈ 𝑈𝑖

Typically require: 𝜖 → 0 as 𝑁 → ∞

 Computation/analysis of 𝜖-Nash (Mean-field equilibrium) is easier 
but not easy.
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Simple Example (PEV Charging)
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……

Smart 
Charger

Smart 
Charger

Smart 
Charger

𝝓 ⋅

Coordinator

min
𝑢𝑖,1,…,𝑢𝑖,𝑇

 
𝑡

𝑇

𝑝𝑡  𝑢 ⋅ 𝑢𝑖,𝑡 + 𝜂 𝑢𝑖,𝑡 −  𝑢𝑖,𝑡
2

Subject to:  𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡 + 𝑢𝑖,𝑡,  𝑥𝑖,𝑇 = 𝛾𝑖, 

𝑝𝑡  𝑢 = 𝛼 𝑢𝑖,𝑡 + 𝑑𝑡, 0 ≤ 𝑢𝑖,𝑡,≤ 𝑢𝑖
max

 Cooperative PEV charging (Ma12),   (Grammatico15)

 𝒖𝒊 = 𝑢𝑖,1, … , 𝑢𝑖,𝑇 is energy profile

 Objective: energy cost + small penalty for deviation from mean

 Electricity price depends on total demand:  𝑖 𝑢𝑖,𝑡 + 𝑑𝑡

 The coupling pricing induces a game among all the PEVs

 Existing results: characterization and computation of the mean field equilibrium
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Other Examples in DER Coordination:
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 Thermostatically controlled loads:

 (Grammatico 15), (Bauso 14), (Bagagiolo & Bauso 14), (Li, Zhang, Lian 
and Kalsi 16), (Chen & Meyn 17)

 Plug-in Electric Vehicles: 

 (Ma, Callaway & Hiskens 12), (Couillet, Perlaza,  Tembine & Debbah 12), 
(Parise, Colombino,  Grammatico & Lygeros 14), (Paccagnan, 
Kamgarpour & Lygeros 16) and (Deori, Margellos, & Prandini 16) 

 Pool Pump: 

 (Meyn, Barooah, Bušić, Chen, & Ehren 15) and (Chen, Bušić, & Meyn 14)

 Others: (Zhu & Basar 11),  (Kamgarpour &Tembine 13)

 In general, no guarantee for successfully computing the mean-field 
equilibrium
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Limitations of Existing Literature
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 Computation:

 Existing works mostly focus on deriving mean-field equations (based on 
Stochastic Differential Equation agent models)

 Mean-field equilibrium needs to solve: HJB  + Fokker Planck  

 Efficient algorithm is not available except for very special cases (Bardi 12, 
Grammatico, et al 16, Achdou and Porretta 16)

 System level performance (Efficiency):

 Cooperative agents (Huang 2012): 

 Modify agent utilities and achieve social maximum asymptotically

 Non-cooperative agents (mostly negative results): 

 Mean field equilibrium (MFE) is inefficient (Balandat and Tomlin, 2013)  

 Efficiency loss has been studied (Huang, 2007), (Yin, et al, 2013)
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Challenges and Our Contribution
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Contribution: mean field game          modified social welfare optimization

 Existence, uniqueness, computation of MFE through optimization

 Efficiency Evaluation: MF equilibrium coincides with social optimizer

 Key questions to enable applications on DER coordination:

 How to efficiently compute a mean-field equilibrium?

 Is it good or bad?

 Given system-level objective, how to induce a good mean-field equilibrium? 
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 Part I: Mean Field Game for Large Scale DER Coordination

 Background

 Main results: Mean field Game vs. social welfare optimization

 Numerical Example

 Extension to  Nonconvex Case

 Part II: Cross-Layer Design of DER Coordination via Aggregate Load 
Modeling
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A Class of Mean-Field Games in Vector Space
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m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖 + 𝐺(  𝑥))

  𝑥 is the mean field:  𝑥 =
1

𝑁
 𝑖=1
𝑁 𝑥𝑖.

 Assumptions:

 𝑋𝑖 is Hilbert space

 ∀𝑢 ∈ 𝑈𝑖 ⇒ 𝔼(𝑥𝑖) ∈ 𝑋𝑖 , 𝔼( 𝑥𝑖
2
) ≤ 𝐶, where 𝑈𝑖 subset of arbitrary vector space

 𝑤𝑖 is a random element (measurable mapping)

 Mean field term 𝜙(⋅) is Lipschitz continuous

 𝐺 ⋅ is Frechet differentiable

 Includes both deterministic (Grammatico, et al, 2016) and stochastic (Huang, et 
al, 2007) as special cases.        

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖(𝑢𝑖 , 𝑤𝑖)

𝔼(𝑥𝑖) ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

m𝑖𝑛
𝑢𝑖,𝑡 𝒕

 𝑡=1
𝐾 ||𝑥𝑖,𝑡 −  𝑥𝑡||

2 +  𝑡=1
𝐾 𝑢𝑖,𝑡

2

𝑉 𝑥𝑖 , 𝑢𝑖 = 𝑥𝑖 + 𝑢𝑖

𝜙  𝑥 = 2  𝑥, 𝐺  𝑥 =  𝑥 2

 
𝑥𝑖,𝑡+1 = 𝐴𝑖𝑥𝑖,𝑡 + 𝐵𝑖𝑢𝑖,𝑡
𝑥𝑖,𝑡 ∈ 𝑋𝑖,𝑡 , 𝑢𝑖,𝑡∈ 𝑈𝑖,𝑡

Grammatico, Prise, Columbino, & Lygeros, TAC 16
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A Class of Mean-Field Games in Vector Space
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m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖 + 𝐺(  𝑥))

  𝑥 is the mean field:  𝑥 =
1

𝑁
 𝑖=1
𝑁 𝑥𝑖.

 Assumptions:

 𝑋𝑖 is Hilbert space

 ∀𝑢 ∈ 𝑈𝑖 ⇒ 𝔼(𝑥𝑖) ∈ 𝑋𝑖 , 𝔼( 𝑥𝑖
2
) ≤ 𝐶, where 𝑈𝑖 can be arbitrary vector space

 𝑤𝑖 is a random element (measurable mapping)

 Mean field term 𝜙(⋅) is Lipschitz continuous

 𝐺 ⋅ is Frechet differentiable

 Includes both deterministic (Grammatico, et al, 2016) and stochastic (Huang, et 
al, 2007) as special cases.        

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖(𝑢𝑖 , 𝑤𝑖)

𝔼(𝑥𝑖) ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

Huang, Caines & Malhame TAC 07

m𝑖𝑛
𝑢𝑖,𝑡 𝒕

𝔼 
0

∞

𝑒−𝜌𝑡 𝑥𝑖,𝑡 −  𝑥𝑡
2
+ 𝑟 𝑢𝑖,𝑡

2
𝑑𝑡

𝑑𝑥𝑖,𝑡 = (𝐴𝑖𝑥𝑖,𝑡 + 𝐵𝑖𝑢𝑖,𝑡)𝑑𝑡 + 𝜎𝑖𝑑𝑤𝑖,𝑡

ℎ ⋅ 𝑞 =  
0

∞

𝑒−𝜌𝑡ℎ𝑡𝑞𝑡𝑑𝑡

m𝑖𝑛
𝒖𝒊

𝔼 𝑥𝑖
2 +  𝑥 2 − 2𝑥𝑖 ⋅  𝑥 + 𝑟 𝑢𝑖

2

Inner product
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Mean Field Equilibrium
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(𝑢1
∗ , … , 𝑢𝑁

∗ ) is ϵ-Nash equilibrium if

𝑈𝑖 𝑢𝑖
∗, 𝑢−𝑖

∗ ≥ 𝑈𝑖 𝑢𝑖 , 𝑢−𝑖
∗ + 𝜖, ∀ 𝑢𝑖 ∈  𝑈𝑖

Theorem 1: The solution, (𝑢1
∗, … , 𝑢𝑁

∗ ),  to the mean-field equations is 
an 𝜖𝑁-Nash equilibrium of the mean field game, and lim

𝑁→∞
𝜖𝑁 = 0.

𝜇𝑖
∗ 𝜆 = arg max

ui∈𝑈𝑖

𝐿𝑖 𝑢𝑖 , 𝜆

𝐿𝑖 𝑢𝑖 , 𝜆 = 𝔼𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜆 ⋅ 𝔼𝑥𝑖

m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖)

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

𝝀 = 𝜙 𝔼Σ𝑥𝑖
∗𝑥𝑖

∗ = 𝑓𝑖 𝑢𝑖
∗, 𝑤𝑖

𝑢𝑖
∗ = arg max

ui∈𝑈𝑖

𝐿𝑖 𝑢𝑖 , 𝝀

Mean Field Fixed Point Equations

1

𝑁

𝑥1
∗

𝑥2
∗

𝑥𝑁
∗

𝜙
1

𝑁
𝔼 𝑥𝑖

∗
Σ𝜆

𝐿1 𝑢1, 𝜆

𝐿2 𝑢2, 𝜆

𝐿𝑁 𝑢𝑁 , 𝜆
 𝜆

Unified result, more general than the literature 
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Mean Field Game to Social Welfare Optimization

𝑥1
∗

𝑥2
∗

𝑥𝑁
∗

𝜙
1

𝑁
𝔼 𝑥𝑖

∗
Σ𝜆

𝐿1 𝑢1, 𝜆

𝐿2 𝑢2, 𝜆

𝐿𝑁 𝑢𝑁 , 𝜆

 View mean-field effect 𝜆 as “price”  

 Becomes standard social welfare problem: optimal price is “marginal” production cost

𝑧∗ =
1

𝑁
𝔼  𝑥𝑖

∗ = 𝜙
1

𝑁
𝔼 𝑥𝑖

∗

𝜆

−Γ 𝑧 + 𝜆𝑧 𝑧∗

1

𝑁
𝔼  𝑥𝑖

∗
𝑥1
∗𝐿1 𝑢1, 𝜆

𝑥2
∗𝐿2 𝑢2, 𝜆

𝑥𝑁
∗𝐿𝑁 𝑢𝑁 , 𝜆

Σ

𝜆

𝜆 = Γ′ 𝑧
1

𝑁

(𝑢1
∗ , … , 𝑢𝑁

∗ ) is ϵ-Nash equilibrium if

𝑈𝑖 𝑢𝑖
∗, 𝑢−𝑖

∗ ≥ 𝑈𝑖 𝑢𝑖 , 𝑢−𝑖
∗ + 𝜖, ∀ 𝑢𝑖 ∈  𝑈𝑖

𝜇𝑖
∗ 𝜆 = arg max

ui∈𝑈𝑖

𝐿𝑖 𝑢𝑖 , 𝜆

𝐿𝑖 𝑢𝑖 , 𝜆 = 𝔼𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜆 ⋅ 𝔼𝑥𝑖

m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖)

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

“virtual supplier”

𝜙 ⋅ =
1

𝑁
Γ′ ⋅



 Click to edit Master text styles

 Second level

 Third level

 Fourth level

 Fifth level

Main Results
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Theorem 2: If the above social optimization problem is strictly 
convex, its solution coincides with the solution to mean-field 
equations.

m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖)

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

max
{𝒖𝟏,…𝒖𝑵,𝒛}

𝔼  

𝒊=𝟏

𝑵

𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − Γ(𝑧)

𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 , 𝑧 =
1

𝑁
𝔼  𝑥𝑖

Social Welfare Optimization

𝜙 ⋅ = Γ′ ⋅
1

𝑁
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Main Results
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 Significance:

 Connection between mean field equilibrium with social optimal solution 

 Mean field equilibrium is socially optimal 

 Social optimal solution is 𝝐-Nash

 Unified framework to study an important class of mean-field games

 Huang 03, Couillet 12, Bauso 14, Huang 10, Ma 12, Kamgarpour 13, Tembine 13, Grammatico 15, 
Grammatico 16, 

 Finding mean-field equilibrium is a convex optimization problem

max
{𝒖𝟏,…𝒖𝑵,𝒛}

𝔼  

𝒊=𝟏

𝑵

𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − Γ(𝑧)

𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 , 𝑧 =
1

𝑁
𝔼  𝑥𝑖

Social Welfare Optimization

m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖)

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

𝜙 ⋅ = Γ′ ⋅
1

𝑁
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Mean-Field Equilibrium Computation
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m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖)

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

 Existing literature: either no computation or simple iterations

 (Grammatico, Gentile, Parise & John Lygeros 15), (Bauso 14), (Bagagiolo & Bauso 
14), (Ma, Callaway & Hiskens 12), (Couillet, Perlaza,  Tembine & Debbah 12), 
(Parise, Colombino,  Grammatico & Lygeros 14), (Paccagnan, Kamgarpour & 
Lygeros 16) and (Deori, Margellos, & Prandini 16)

 In general, no convergence guarantees

 (Grammatico, Prise, Columbino, & Lygeros, TAC 16): Various conditions 
on convergence for special linear quadratic cases

𝑢1
(𝑘)

⋮

𝑢𝑁
(𝑘)

𝜆 𝑘+1 𝛼𝑖𝑥𝑖
𝑘

Φ(𝜆 𝑘 ,  𝛼𝑖𝑥𝑖
𝑘
)

“best response”
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Mean-Field Equilibrium Computation

18

 Existing iterative equilibrium 
algorithms are essentially 
prime dual

m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖)

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

𝑚𝑖𝑛
𝜆

𝑚𝑎𝑥
{𝑢1,…𝑢𝑁,𝑧}

𝔼  𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜆 ⋅ 𝑥𝑖 − Γ 𝑧 + 𝜆 ⋅ 𝑁𝑧

 
𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖 , ∀𝑖 = 1, … , 𝑁
𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 , ∀𝑖 = 1, … , 𝑁

Dual Form

max
{𝒖𝟏,…𝒖𝑵,𝒛}

𝔼  

𝒊=𝟏

𝑵

𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − Γ(𝑧)

𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 , 𝑧 =
1

𝑁
𝔼  𝑥𝑖

Social Welfare Optimization

𝜙 ⋅ = Γ′ ⋅
1

𝑁

 Extensive literature on convex optimization can be used to facilitate 
equilibrium computation (e.g. ADMM)
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PEV Charging Example (Revisited) 

19

……

Smart 
Charger

Smart 
Charger

Smart 
Charger

𝝓 ⋅

Coordinator

min
(𝑢1,…,𝑢𝑁,𝑧)

𝜂 

𝑖

𝒖𝒊 − 𝒛
2
+ Γ(𝑁𝑧)

subject to:  𝑡𝑢𝑖 𝑡 = 𝛾𝑖
1

𝑁
 𝑖𝑢𝑖 = 𝑧

 Benchmark algorithm (Grammatico 16): given 𝑧, derive 𝒖𝒊, then update 𝑧

 Our algorithm: construct the social welfare optimization, and solve it via ADMM

min
(𝑢𝑖,1,…,𝑢𝑖,𝑇)

2𝑎  𝒖𝒊 + 𝒅 𝑇𝒖𝒊 + 𝜂 𝒖𝒊 −  𝒖 2

subject to: 𝒖𝒊 ∈ 𝑈𝑖 = 𝑢𝑖,𝑡 ≥ 0,  𝑡 𝑢𝑖,𝑡 = 𝛾𝑖
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Theorem 3 (Complete Connections):

Extensions to Nonconvex Case 
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max
{𝒖𝟏,…𝒖𝑵,𝒛}

𝔼  

𝒊=𝟏

𝑵

𝑉𝑖 𝑥𝑖 , 𝑢𝑖 + Γ(𝑧)

𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 , 𝑧 =
1

𝑁
𝔼  𝑥𝑖

Social Welfare Optimization

m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖)

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

𝜙 ⋅ = Γ′ ⋅
1

𝑁

Existence of  MFE

Uniqueness of MFE

MFE is S.O. S.O. is MFE

Strong Duality 

Strictly Convex

𝜙 monotone

uniqueness

 Recover and extend results in the literature
 Novel perspective to study mean field games; 

𝜙 monotone:  𝜙 𝑥 − 𝜙 𝑦 , 𝑥 − 𝑦 ≥ 0
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Outline
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 Part I: Mean Field Game for Large Scale DER Coordination

 Background

 Main results: Mean field Game vs. social welfare optimization

 Numerical Example

 Extension to  Nonconvex Case

 Part II: Cross-Layer Design of DER Coordination via Aggregate Load 
Modeling
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Towards Cross-Layer Design
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……

Agent 1 Agent 2 Agent N

Aggregator

 Coordination of  aggregation of DERs can reshape total power profile 

 Market-based (Transactive) 

 Direct load control
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Towards Cross-Layer Design
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 Coordination of  aggregation of DERs can reshape total power profile 

 Market-based (Transactive) 

 Direct load control

 Need to interact with higher layer (e.g. whole sale market)

 Key: need a good aggregate asset model 

 Understand how much we can modify the power profile 

Market

Other 
Participants
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Towards Cross-Layer Design
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Market

Other 
Participants

Simplified model

“ON” DistributionAir temperature evolution “OFF” Distribution Percentage of “ON” Units

PDE/Markov Chain model

Virtual battery model
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Towards Cross-Layer Design
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Market

Other 
Participants

Simplified model

PDE/Markov Chain model

Virtual battery model

 We developed a geometric approach for aggregate flexibility modeling

 Include virtual battery modeling as special cases

 Automate and optimize virtual battery modeling process

 Improve modeling performance
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Geometric Approach for Aggregate Flexibility
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𝑥𝑖 𝑘 = 𝛼𝑖𝑥𝑖 𝑘 − 1 + 𝑏𝑖𝑢𝑖(𝑘),

𝑢𝑖 ∈ −𝑢−
𝑖 , 𝑢+

𝑖 , 𝑥𝑖 ∈ −𝑥−
𝑖 , 𝑥+

𝑖

 Individual asset dynamic model

 Individual power flexibility over [0,𝑚]

𝒫𝑖 ≔ 𝑢𝑖 ∈ ℝ𝑚

𝑢𝑖 𝑡 ∈ −𝑢−
𝑖 𝑡 , 𝑢+

𝑖 𝑡 ,

𝑢𝑖 𝑡 , 𝑥𝑖 𝑡 satisfy 1 ,

𝑥𝑖(𝑡) ∈ [−𝑥−
𝑖 (𝑡), 𝑥+

𝑖 (𝑡)]

𝒫𝑖

𝒫 = 𝑢 ∈ ℝ𝑚: 𝑢 = Σ𝑖
𝑁𝑢𝑖 , 𝑢𝑖 ∈ 𝒫𝑖

 Aggregate power flexibility over [0,𝑚]

𝒫 ≔  

𝑖

𝒫𝑖This is Minkowski sum:
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 Calculation of the Minkowski sum of  𝒫𝑖 is NP hard

 Look for inner (sufficient) and outer (necessary) approximation of 𝒫
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𝒫𝑠 ⊂ 𝒫 ⊂ 𝒫𝑛.

 Key Fact: Minkowski sum of homothets reduces to ordinary sum:

(𝛽1𝒬 + 𝑡1)⨁(𝛽2𝒬 + 𝑡2)=(𝛽1+𝛽2)𝒬 + (𝑡1 + 𝑡2).

𝒬𝛽𝒬 + 𝑡

Homothet:
dilation and translation of an object, 
∀𝛽 > 0, 𝛽𝒬 + 𝑡 ≔ {𝑈:𝑈 = 𝛽𝜉 + 𝑡, ∀𝜉 ∈ 𝒬}

Geometric Approach for Aggregate Flexibility
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Geometric Modeling Procedure
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 Modeling Procedure:

1. Choose a prototype polytope 𝒫𝑜

2. Approximate each 𝒫𝑖 by the homothet of 𝒫𝑜

3. Calculate the Minkowski sum of these homothetic approximations

homothet
approximations

𝒫𝑖

prototype 
polytope

𝒫𝑜
𝛽𝑖
−𝒫𝑜 + 𝑡𝑖

−

𝛽𝑖
+𝒫𝑜 + 𝑡𝑖

+

Maximum Inner Appr. (MIA)

maximize 𝛽

subject to: 𝛽𝒫𝑜 + 𝑡 ⊂ 𝒫𝑖,
𝛽 > 0,

Minimum Outer Appr.  (MOA)

minimize 𝛽

subject to: 𝛽𝒫𝑜 + 𝑡 ⊃ 𝒫𝑖,
𝛽 > 0,

 If 𝒫𝑜 is chosen from a virtual battery model, the resulting approximation 
has a (virtual) battery interpretation 

 Many existing virtual battery modeling methods are special cases
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Numerical Validations
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 1000 residential HVACs

 Priority-stack-based tracking control of hybrid TCL models

 Regulation capacity: estimated using sufficient virtual battery model

[1] He Hao, Borhan M. Sanandaji, Kameshwar Poolla, and Tyrone L. Vincent. Aggregate Flexibility of Thermostatically 
Controlled Loads. IEEE Transactions On Power Systems, Vol. 30, No. 1, Jan. 2015
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Conclusion 

 Part I: Mean field game is powerful tool for analyzing large games

 Mean field games  ⇔ Social Welfare Optimization Problem

 Efficiency evaluation: Mean-field equilibrium coincides with social optimizer

 Existence, uniqueness, computation of MFE through optimization

 Part II: Geometric Approach for Aggregate Flexibility Modeling 

 Individual flexibility can be represented by power consumption set 
(Polytope)

 Aggregate flexibility modeling can be viewed as approximating Minkowski
sum of heterogeneous polytopes

 Include virtual battery modeling as special case
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