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 Part I: Mean Field Game for Large Scale DER Coordination

 Background

 Main results: Mean field Game vs. social welfare optimization

 Numerical Example

 Extension to  Nonconvex Case

 Part II: Cross-Layer Design of DER Coordination via Aggregate Load 
Modeling
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……

Agent 1 Agent 2 Agent N

Coordinator

 DERs in future power grid:  opportunities + challenges

 Users and stakeholders of DERs are self-interested

 Coordination strategies must respect users’ preferences and 
possibly strategic behaviors  

 Opt-out from the program

 Game the system
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Background
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 Classical game theory has been widely used in power systems

 Emerging challenges: 

 Potentially large number of DERs

 DERs typically have nontrivial dynamics

m𝑎𝑥
𝑢1

𝑈1 𝑢1, 𝑢2, … , 𝑢𝑁

𝑢1 ∈ 𝑈1 Agent 1

m𝑎𝑥
𝑢𝑖

𝑈𝑖 𝑢1, 𝑢2, … , 𝑢𝑁

𝑢𝑖 ∈ 𝑈𝑖 Agent 𝑖

m𝑎𝑥
𝑢𝑁

𝑈𝑁 𝑢1, 𝑢2, … , 𝑢𝑁

𝑢𝑁 ∈ 𝑈𝑁 Agent 𝑁
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From Game to Mean-Field Game
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 Often times, “weak” coupling depends only on aggregate effect

 Mean-field game theory can simplify the analysis of the game 

m𝑎𝑥
𝑢1

𝑈𝑖 𝑢1, 𝚺𝒋𝒖𝒋

𝑢1 ∈ 𝑈1 Agent 1

m𝑎𝑥
𝑢𝑖

𝑈𝑖 𝑢𝑖 , 𝚺𝒋𝒖𝒋

𝑢𝑖 ∈ 𝑈𝑖 Agent 𝑖

m𝑎𝑥
𝑢𝑁

𝑈𝑖 𝑢𝑁, 𝚺𝒋𝒖𝒋

𝑢𝑁 ∈ 𝑈𝑁 Agent 𝑁

(𝑢1
∗ , … , 𝑢𝑁

∗ ) is 𝝐-Nash equilibrium if  𝑈𝑖 𝑢𝑖
∗, 𝑢−𝑖

∗ ≥ 𝑈𝑖 𝑢𝑖, 𝑢−𝑖
∗ − 𝝐, ∀ 𝑢𝑖 ∈ 𝑈𝑖

(𝑢1
∗ , … , 𝑢𝑁

∗ ) is Nash equilibrium if  𝑈𝑖 𝑢𝑖
∗, 𝑢−𝑖

∗ ≥ 𝑈𝑖 𝑢𝑖 , 𝑢−𝑖
∗ , ∀ 𝑢𝑖 ∈ 𝑈𝑖

Typically require: 𝜖 → 0 as 𝑁 → ∞

 Computation/analysis of 𝜖-Nash (Mean-field equilibrium) is easier 
but not easy.
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Simple Example (PEV Charging)
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……

Smart 
Charger

Smart 
Charger

Smart 
Charger

𝝓 ⋅

Coordinator

min
𝑢𝑖,1,…,𝑢𝑖,𝑇

 
𝑡

𝑇

𝑝𝑡  𝑢 ⋅ 𝑢𝑖,𝑡 + 𝜂 𝑢𝑖,𝑡 −  𝑢𝑖,𝑡
2

Subject to:  𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡 + 𝑢𝑖,𝑡,  𝑥𝑖,𝑇 = 𝛾𝑖, 

𝑝𝑡  𝑢 = 𝛼 𝑢𝑖,𝑡 + 𝑑𝑡, 0 ≤ 𝑢𝑖,𝑡,≤ 𝑢𝑖
max

 Cooperative PEV charging (Ma12),   (Grammatico15)

 𝒖𝒊 = 𝑢𝑖,1, … , 𝑢𝑖,𝑇 is energy profile

 Objective: energy cost + small penalty for deviation from mean

 Electricity price depends on total demand:  𝑖 𝑢𝑖,𝑡 + 𝑑𝑡

 The coupling pricing induces a game among all the PEVs

 Existing results: characterization and computation of the mean field equilibrium
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Other Examples in DER Coordination:
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 Thermostatically controlled loads:

 (Grammatico 15), (Bauso 14), (Bagagiolo & Bauso 14), (Li, Zhang, Lian 
and Kalsi 16), (Chen & Meyn 17)

 Plug-in Electric Vehicles: 

 (Ma, Callaway & Hiskens 12), (Couillet, Perlaza,  Tembine & Debbah 12), 
(Parise, Colombino,  Grammatico & Lygeros 14), (Paccagnan, 
Kamgarpour & Lygeros 16) and (Deori, Margellos, & Prandini 16) 

 Pool Pump: 

 (Meyn, Barooah, Bušić, Chen, & Ehren 15) and (Chen, Bušić, & Meyn 14)

 Others: (Zhu & Basar 11),  (Kamgarpour &Tembine 13)

 In general, no guarantee for successfully computing the mean-field 
equilibrium
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Limitations of Existing Literature
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 Computation:

 Existing works mostly focus on deriving mean-field equations (based on 
Stochastic Differential Equation agent models)

 Mean-field equilibrium needs to solve: HJB  + Fokker Planck  

 Efficient algorithm is not available except for very special cases (Bardi 12, 
Grammatico, et al 16, Achdou and Porretta 16)

 System level performance (Efficiency):

 Cooperative agents (Huang 2012): 

 Modify agent utilities and achieve social maximum asymptotically

 Non-cooperative agents (mostly negative results): 

 Mean field equilibrium (MFE) is inefficient (Balandat and Tomlin, 2013)  

 Efficiency loss has been studied (Huang, 2007), (Yin, et al, 2013)
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Challenges and Our Contribution
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Contribution: mean field game          modified social welfare optimization

 Existence, uniqueness, computation of MFE through optimization

 Efficiency Evaluation: MF equilibrium coincides with social optimizer

 Key questions to enable applications on DER coordination:

 How to efficiently compute a mean-field equilibrium?

 Is it good or bad?

 Given system-level objective, how to induce a good mean-field equilibrium? 
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 Part I: Mean Field Game for Large Scale DER Coordination

 Background

 Main results: Mean field Game vs. social welfare optimization

 Numerical Example

 Extension to  Nonconvex Case

 Part II: Cross-Layer Design of DER Coordination via Aggregate Load 
Modeling
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A Class of Mean-Field Games in Vector Space
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m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖 + 𝐺(  𝑥))

  𝑥 is the mean field:  𝑥 =
1

𝑁
 𝑖=1
𝑁 𝑥𝑖.

 Assumptions:

 𝑋𝑖 is Hilbert space

 ∀𝑢 ∈ 𝑈𝑖 ⇒ 𝔼(𝑥𝑖) ∈ 𝑋𝑖 , 𝔼( 𝑥𝑖
2
) ≤ 𝐶, where 𝑈𝑖 subset of arbitrary vector space

 𝑤𝑖 is a random element (measurable mapping)

 Mean field term 𝜙(⋅) is Lipschitz continuous

 𝐺 ⋅ is Frechet differentiable

 Includes both deterministic (Grammatico, et al, 2016) and stochastic (Huang, et 
al, 2007) as special cases.        

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖(𝑢𝑖 , 𝑤𝑖)

𝔼(𝑥𝑖) ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

m𝑖𝑛
𝑢𝑖,𝑡 𝒕

 𝑡=1
𝐾 ||𝑥𝑖,𝑡 −  𝑥𝑡||

2 +  𝑡=1
𝐾 𝑢𝑖,𝑡

2

𝑉 𝑥𝑖 , 𝑢𝑖 = 𝑥𝑖 + 𝑢𝑖

𝜙  𝑥 = 2  𝑥, 𝐺  𝑥 =  𝑥 2

 
𝑥𝑖,𝑡+1 = 𝐴𝑖𝑥𝑖,𝑡 + 𝐵𝑖𝑢𝑖,𝑡
𝑥𝑖,𝑡 ∈ 𝑋𝑖,𝑡 , 𝑢𝑖,𝑡∈ 𝑈𝑖,𝑡

Grammatico, Prise, Columbino, & Lygeros, TAC 16
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A Class of Mean-Field Games in Vector Space
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m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖 + 𝐺(  𝑥))

  𝑥 is the mean field:  𝑥 =
1

𝑁
 𝑖=1
𝑁 𝑥𝑖.

 Assumptions:

 𝑋𝑖 is Hilbert space

 ∀𝑢 ∈ 𝑈𝑖 ⇒ 𝔼(𝑥𝑖) ∈ 𝑋𝑖 , 𝔼( 𝑥𝑖
2
) ≤ 𝐶, where 𝑈𝑖 can be arbitrary vector space

 𝑤𝑖 is a random element (measurable mapping)

 Mean field term 𝜙(⋅) is Lipschitz continuous

 𝐺 ⋅ is Frechet differentiable

 Includes both deterministic (Grammatico, et al, 2016) and stochastic (Huang, et 
al, 2007) as special cases.        

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖(𝑢𝑖 , 𝑤𝑖)

𝔼(𝑥𝑖) ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

Huang, Caines & Malhame TAC 07

m𝑖𝑛
𝑢𝑖,𝑡 𝒕

𝔼 
0

∞

𝑒−𝜌𝑡 𝑥𝑖,𝑡 −  𝑥𝑡
2
+ 𝑟 𝑢𝑖,𝑡

2
𝑑𝑡

𝑑𝑥𝑖,𝑡 = (𝐴𝑖𝑥𝑖,𝑡 + 𝐵𝑖𝑢𝑖,𝑡)𝑑𝑡 + 𝜎𝑖𝑑𝑤𝑖,𝑡

ℎ ⋅ 𝑞 =  
0

∞

𝑒−𝜌𝑡ℎ𝑡𝑞𝑡𝑑𝑡

m𝑖𝑛
𝒖𝒊

𝔼 𝑥𝑖
2 +  𝑥 2 − 2𝑥𝑖 ⋅  𝑥 + 𝑟 𝑢𝑖

2

Inner product
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Mean Field Equilibrium
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(𝑢1
∗ , … , 𝑢𝑁

∗ ) is ϵ-Nash equilibrium if

𝑈𝑖 𝑢𝑖
∗, 𝑢−𝑖

∗ ≥ 𝑈𝑖 𝑢𝑖 , 𝑢−𝑖
∗ + 𝜖, ∀ 𝑢𝑖 ∈  𝑈𝑖

Theorem 1: The solution, (𝑢1
∗, … , 𝑢𝑁

∗ ),  to the mean-field equations is 
an 𝜖𝑁-Nash equilibrium of the mean field game, and lim

𝑁→∞
𝜖𝑁 = 0.

𝜇𝑖
∗ 𝜆 = arg max

ui∈𝑈𝑖

𝐿𝑖 𝑢𝑖 , 𝜆

𝐿𝑖 𝑢𝑖 , 𝜆 = 𝔼𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜆 ⋅ 𝔼𝑥𝑖

m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖)

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

𝝀 = 𝜙 𝔼Σ𝑥𝑖
∗𝑥𝑖

∗ = 𝑓𝑖 𝑢𝑖
∗, 𝑤𝑖

𝑢𝑖
∗ = arg max

ui∈𝑈𝑖

𝐿𝑖 𝑢𝑖 , 𝝀

Mean Field Fixed Point Equations

1

𝑁

𝑥1
∗

𝑥2
∗

𝑥𝑁
∗

𝜙
1

𝑁
𝔼 𝑥𝑖

∗
Σ𝜆

𝐿1 𝑢1, 𝜆

𝐿2 𝑢2, 𝜆

𝐿𝑁 𝑢𝑁 , 𝜆
 𝜆

Unified result, more general than the literature 
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Mean Field Game to Social Welfare Optimization

𝑥1
∗

𝑥2
∗

𝑥𝑁
∗

𝜙
1

𝑁
𝔼 𝑥𝑖

∗
Σ𝜆

𝐿1 𝑢1, 𝜆

𝐿2 𝑢2, 𝜆

𝐿𝑁 𝑢𝑁 , 𝜆

 View mean-field effect 𝜆 as “price”  

 Becomes standard social welfare problem: optimal price is “marginal” production cost

𝑧∗ =
1

𝑁
𝔼  𝑥𝑖

∗ = 𝜙
1

𝑁
𝔼 𝑥𝑖

∗

𝜆

−Γ 𝑧 + 𝜆𝑧 𝑧∗

1

𝑁
𝔼  𝑥𝑖

∗
𝑥1
∗𝐿1 𝑢1, 𝜆

𝑥2
∗𝐿2 𝑢2, 𝜆

𝑥𝑁
∗𝐿𝑁 𝑢𝑁 , 𝜆

Σ

𝜆

𝜆 = Γ′ 𝑧
1

𝑁

(𝑢1
∗ , … , 𝑢𝑁

∗ ) is ϵ-Nash equilibrium if

𝑈𝑖 𝑢𝑖
∗, 𝑢−𝑖

∗ ≥ 𝑈𝑖 𝑢𝑖 , 𝑢−𝑖
∗ + 𝜖, ∀ 𝑢𝑖 ∈  𝑈𝑖

𝜇𝑖
∗ 𝜆 = arg max

ui∈𝑈𝑖

𝐿𝑖 𝑢𝑖 , 𝜆

𝐿𝑖 𝑢𝑖 , 𝜆 = 𝔼𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜆 ⋅ 𝔼𝑥𝑖

m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖)

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

“virtual supplier”

𝜙 ⋅ =
1

𝑁
Γ′ ⋅
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Main Results
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Theorem 2: If the above social optimization problem is strictly 
convex, its solution coincides with the solution to mean-field 
equations.

m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖)

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

max
{𝒖𝟏,…𝒖𝑵,𝒛}

𝔼  

𝒊=𝟏

𝑵

𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − Γ(𝑧)

𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 , 𝑧 =
1

𝑁
𝔼  𝑥𝑖

Social Welfare Optimization

𝜙 ⋅ = Γ′ ⋅
1

𝑁
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Main Results
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 Significance:

 Connection between mean field equilibrium with social optimal solution 

 Mean field equilibrium is socially optimal 

 Social optimal solution is 𝝐-Nash

 Unified framework to study an important class of mean-field games

 Huang 03, Couillet 12, Bauso 14, Huang 10, Ma 12, Kamgarpour 13, Tembine 13, Grammatico 15, 
Grammatico 16, 

 Finding mean-field equilibrium is a convex optimization problem

max
{𝒖𝟏,…𝒖𝑵,𝒛}

𝔼  

𝒊=𝟏

𝑵

𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − Γ(𝑧)

𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 , 𝑧 =
1

𝑁
𝔼  𝑥𝑖

Social Welfare Optimization

m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖)

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

𝜙 ⋅ = Γ′ ⋅
1

𝑁
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Mean-Field Equilibrium Computation
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m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖)

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

 Existing literature: either no computation or simple iterations

 (Grammatico, Gentile, Parise & John Lygeros 15), (Bauso 14), (Bagagiolo & Bauso 
14), (Ma, Callaway & Hiskens 12), (Couillet, Perlaza,  Tembine & Debbah 12), 
(Parise, Colombino,  Grammatico & Lygeros 14), (Paccagnan, Kamgarpour & 
Lygeros 16) and (Deori, Margellos, & Prandini 16)

 In general, no convergence guarantees

 (Grammatico, Prise, Columbino, & Lygeros, TAC 16): Various conditions 
on convergence for special linear quadratic cases

𝑢1
(𝑘)

⋮

𝑢𝑁
(𝑘)

𝜆 𝑘+1 𝛼𝑖𝑥𝑖
𝑘

Φ(𝜆 𝑘 ,  𝛼𝑖𝑥𝑖
𝑘
)

“best response”
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Mean-Field Equilibrium Computation

18

 Existing iterative equilibrium 
algorithms are essentially 
prime dual

m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖)

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

𝑚𝑖𝑛
𝜆

𝑚𝑎𝑥
{𝑢1,…𝑢𝑁,𝑧}

𝔼  𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜆 ⋅ 𝑥𝑖 − Γ 𝑧 + 𝜆 ⋅ 𝑁𝑧

 
𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖 , ∀𝑖 = 1, … , 𝑁
𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 , ∀𝑖 = 1, … , 𝑁

Dual Form

max
{𝒖𝟏,…𝒖𝑵,𝒛}

𝔼  

𝒊=𝟏

𝑵

𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − Γ(𝑧)

𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 , 𝑧 =
1

𝑁
𝔼  𝑥𝑖

Social Welfare Optimization

𝜙 ⋅ = Γ′ ⋅
1

𝑁

 Extensive literature on convex optimization can be used to facilitate 
equilibrium computation (e.g. ADMM)
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……

Smart 
Charger

Smart 
Charger

Smart 
Charger

𝝓 ⋅

Coordinator

min
(𝑢1,…,𝑢𝑁,𝑧)

𝜂 

𝑖

𝒖𝒊 − 𝒛
2
+ Γ(𝑁𝑧)

subject to:  𝑡𝑢𝑖 𝑡 = 𝛾𝑖
1

𝑁
 𝑖𝑢𝑖 = 𝑧

 Benchmark algorithm (Grammatico 16): given 𝑧, derive 𝒖𝒊, then update 𝑧

 Our algorithm: construct the social welfare optimization, and solve it via ADMM

min
(𝑢𝑖,1,…,𝑢𝑖,𝑇)

2𝑎  𝒖𝒊 + 𝒅 𝑇𝒖𝒊 + 𝜂 𝒖𝒊 −  𝒖 2

subject to: 𝒖𝒊 ∈ 𝑈𝑖 = 𝑢𝑖,𝑡 ≥ 0,  𝑡 𝑢𝑖,𝑡 = 𝛾𝑖
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Extensions to Nonconvex Case 
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max
{𝒖𝟏,…𝒖𝑵,𝒛}

𝔼  

𝒊=𝟏

𝑵

𝑉𝑖 𝑥𝑖 , 𝑢𝑖 + Γ(𝑧)

𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 , 𝑧 =
1

𝑁
𝔼  𝑥𝑖

Social Welfare Optimization

m𝑎𝑥
{𝒖𝒊}

𝔼(𝑉𝑖 𝑥𝑖 , 𝑢𝑖 − 𝜙  𝑥 ⋅ 𝑥𝑖)

Mean Field Game

Agent 𝑖  
𝑥𝑖 = 𝑓𝑖 𝑢𝑖 , 𝑤𝑖

𝔼𝑥𝑖 ∈ 𝑋𝑖 , 𝑢𝑖 ∈ 𝑈𝑖

𝜙 ⋅ = Γ′ ⋅
1

𝑁

Existence of  MFE

Uniqueness of MFE

MFE is S.O. S.O. is MFE

Strong Duality 

Strictly Convex

𝜙 monotone

uniqueness

 Recover and extend results in the literature
 Novel perspective to study mean field games; 

𝜙 monotone:  𝜙 𝑥 − 𝜙 𝑦 , 𝑥 − 𝑦 ≥ 0
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 Part I: Mean Field Game for Large Scale DER Coordination

 Background

 Main results: Mean field Game vs. social welfare optimization

 Numerical Example

 Extension to  Nonconvex Case

 Part II: Cross-Layer Design of DER Coordination via Aggregate Load 
Modeling



 Click to edit Master text styles

 Second level

 Third level

 Fourth level

 Fifth level

Towards Cross-Layer Design

22

……

Agent 1 Agent 2 Agent N

Aggregator

 Coordination of  aggregation of DERs can reshape total power profile 

 Market-based (Transactive) 

 Direct load control
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 Coordination of  aggregation of DERs can reshape total power profile 

 Market-based (Transactive) 

 Direct load control

 Need to interact with higher layer (e.g. whole sale market)

 Key: need a good aggregate asset model 

 Understand how much we can modify the power profile 

Market

Other 
Participants
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Market

Other 
Participants

Simplified model

“ON” DistributionAir temperature evolution “OFF” Distribution Percentage of “ON” Units

PDE/Markov Chain model

Virtual battery model
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Market

Other 
Participants

Simplified model

PDE/Markov Chain model

Virtual battery model

 We developed a geometric approach for aggregate flexibility modeling

 Include virtual battery modeling as special cases

 Automate and optimize virtual battery modeling process

 Improve modeling performance
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𝑥𝑖 𝑘 = 𝛼𝑖𝑥𝑖 𝑘 − 1 + 𝑏𝑖𝑢𝑖(𝑘),

𝑢𝑖 ∈ −𝑢−
𝑖 , 𝑢+

𝑖 , 𝑥𝑖 ∈ −𝑥−
𝑖 , 𝑥+

𝑖

 Individual asset dynamic model

 Individual power flexibility over [0,𝑚]

𝒫𝑖 ≔ 𝑢𝑖 ∈ ℝ𝑚

𝑢𝑖 𝑡 ∈ −𝑢−
𝑖 𝑡 , 𝑢+

𝑖 𝑡 ,

𝑢𝑖 𝑡 , 𝑥𝑖 𝑡 satisfy 1 ,

𝑥𝑖(𝑡) ∈ [−𝑥−
𝑖 (𝑡), 𝑥+

𝑖 (𝑡)]

𝒫𝑖

𝒫 = 𝑢 ∈ ℝ𝑚: 𝑢 = Σ𝑖
𝑁𝑢𝑖 , 𝑢𝑖 ∈ 𝒫𝑖

 Aggregate power flexibility over [0,𝑚]

𝒫 ≔  

𝑖

𝒫𝑖This is Minkowski sum:
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 Calculation of the Minkowski sum of  𝒫𝑖 is NP hard

 Look for inner (sufficient) and outer (necessary) approximation of 𝒫

27

𝒫𝑠 ⊂ 𝒫 ⊂ 𝒫𝑛.

 Key Fact: Minkowski sum of homothets reduces to ordinary sum:

(𝛽1𝒬 + 𝑡1)⨁(𝛽2𝒬 + 𝑡2)=(𝛽1+𝛽2)𝒬 + (𝑡1 + 𝑡2).

𝒬𝛽𝒬 + 𝑡

Homothet:
dilation and translation of an object, 
∀𝛽 > 0, 𝛽𝒬 + 𝑡 ≔ {𝑈:𝑈 = 𝛽𝜉 + 𝑡, ∀𝜉 ∈ 𝒬}

Geometric Approach for Aggregate Flexibility
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 Modeling Procedure:

1. Choose a prototype polytope 𝒫𝑜

2. Approximate each 𝒫𝑖 by the homothet of 𝒫𝑜

3. Calculate the Minkowski sum of these homothetic approximations

homothet
approximations

𝒫𝑖

prototype 
polytope

𝒫𝑜
𝛽𝑖
−𝒫𝑜 + 𝑡𝑖

−

𝛽𝑖
+𝒫𝑜 + 𝑡𝑖

+

Maximum Inner Appr. (MIA)

maximize 𝛽

subject to: 𝛽𝒫𝑜 + 𝑡 ⊂ 𝒫𝑖,
𝛽 > 0,

Minimum Outer Appr.  (MOA)

minimize 𝛽

subject to: 𝛽𝒫𝑜 + 𝑡 ⊃ 𝒫𝑖,
𝛽 > 0,

 If 𝒫𝑜 is chosen from a virtual battery model, the resulting approximation 
has a (virtual) battery interpretation 

 Many existing virtual battery modeling methods are special cases
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Numerical Validations
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 1000 residential HVACs

 Priority-stack-based tracking control of hybrid TCL models

 Regulation capacity: estimated using sufficient virtual battery model

[1] He Hao, Borhan M. Sanandaji, Kameshwar Poolla, and Tyrone L. Vincent. Aggregate Flexibility of Thermostatically 
Controlled Loads. IEEE Transactions On Power Systems, Vol. 30, No. 1, Jan. 2015
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Conclusion 

 Part I: Mean field game is powerful tool for analyzing large games

 Mean field games  ⇔ Social Welfare Optimization Problem

 Efficiency evaluation: Mean-field equilibrium coincides with social optimizer

 Existence, uniqueness, computation of MFE through optimization

 Part II: Geometric Approach for Aggregate Flexibility Modeling 

 Individual flexibility can be represented by power consumption set 
(Polytope)

 Aggregate flexibility modeling can be viewed as approximating Minkowski
sum of heterogeneous polytopes

 Include virtual battery modeling as special case

30
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