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= DERs in future power grid: opportunities + challenges

Coordinator

= Users and stakeholders of DERs are self-interested

= Coordination strategies must respect users’ preferences and
possibly strategic behaviors

= Opt-out from the program
= Game the system
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= Classical game theory has been widely used in power systems
= Emerging challenges:
= Potentially large number of DERs

= DERs typically have nontrivial dynamics



From Game to Mean-Field Game OHIO
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uiEUl-

= Often times, “weak” coupling depends only on aggregate effect

= Mean-field game theory can simplify the analysis of the game
(uj, ..., uy) is Nash equilibrium if U;(u;,u”;) = U;(u;,u’,), Y u; € U;
(ui, ..., uy) is €e-Nash equilibrium if U;(u;,u”;) = U;(u;, u”;) — €,V u; € U;

Typically require: e - 0as N = oo

= Computation/analysis of e-Nash (Mean-field equilibrium) is easier
but not easy.
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Simple Example (PEV Charging) SIATE
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Coordinator
| - )
min z pe(@) - u;r +1 (ul t ult)

ull u'lT

Subjectto: X;r41 = X+ Uie, XiT = Vi)

o J

Smart
Charger

pe (1) = aujs +de, 0< Uy, < ux

= Cooperative PEV charging (Mal12), (Grammaticol5)
"u; = (ui,l, ...,ul-,T) is energy profile

= Objective: energy cost + small penalty for deviation from mean

Normalized demand per PEV (kW)

= Electricity price depends on total demand: (¥;u;, + d;)

i ! 1 I f I ! | I i i
12pPM 06 PM 00 AM 06 AM 12pPM

= The coupling pricing induces a game among all the PEVs Time of the day

= Existing results: characterization and computation of the mean field equilibrium



Other Examples in DER Coordination: OHIO
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= Thermostatically controlled loads:

= (Grammatico 15), (Bauso 14), (Bagagiolo & Bauso 14), (Li, Zhang, Lian
and Kalsi 16), (Chen & Meyn 17)

= Plug-in Electric Vehicles:

= (Ma, Callaway & Hiskens 12), (Couillet, Perlaza, Tembine & Debbah 12),
(Parise, Colombino, Grammatico & Lygeros 14), (Paccagnan,
Kamgarpour & Lygeros 16) and (Deori, Margellos, & Prandini 16)

= Pool Pump:
= (Meyn, Barooah, Busi¢, Chen, & Ehren 15) and (Chen, Busi¢, & Meyn 14)
= Others: (Zhu & Basar 11), (Kamgarpour &Tembine 13)

= In general, no guarantee for successfully computing the mean-field
equilibrium



Limitations of Existing Literature OHIO
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= Computation:

= Existing works mostly focus on deriving mean-field equations (based on
Stochastic Differential Equation agent models)

= Mean-field equilibrium needs to solve: HIB + Fokker Planck

= Efficient algorithm is not available except for very special cases (Bardi 12,
Grammatico, et al 16, Achdou and Porretta16) @ @ ——F

= System level performance (Efficiency):

= Cooperative agents (Huang 2012):

non-PEV demand

ptotically I

12PM 06 PM 00 AM 06 AM 12PM

= Non-cooperative agents (mostly negative results): Time of the day

Igrmalized demand per PEV (kW)
-

= Modify agent utilities and achieve social maximum asy

= Mean field equilibrium (MFE) is inefficient (Balandat and Tomlin, 2013)
= Efficiency loss has been studied (Huang, 2007), (Yin, et al, 2013)
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= Key questions to enable applications on DER coordination:
= How to efficiently compute a mean-field equilibrium?
" |sit good or bad?

= Given system-level objective, how to induce a good mean-field equilibrium?

Contribution: mean field game «— modified social welfare optimization

= Existence, uniqueness, computation of MFE through optimization

= Efficiency Evaluation: MF equilibrium coincides with social optimizer
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A Class of Mean-Field Games in Vector Space OHIO

Mean Field Game Grammatico, Prise, Columbino, & Lygeros, TAC 16
. _ 2
max (Y, (v, ) = () - 3 + 6(2) puin Zemallie = 2+ X
Uj Lt

x; = fi(up, wy) Xie+1 = AiXir + Biuge
Agenti |E(x;) € X;, u; € U; Xit € Xit, Uit € Upye
V(xi,up) = llx ]l + [l
_ . . _ 1
" X is the mean field: x = — N X () =2x%, G = ||x]?

= Assumptions:
= X; is Hilbert space

2
" Yu € U; = E(x;) € X;, IE(||xl-|| ) < C, where U; subset of arbitrary vector space
= w; is a random element (measurable mapping)

= Mean field term ¢ () is Lipschitz continuous
= G(-) is Frechet differentiable

" Includes both deterministic (Grammatico, et al, 2016) and stochastic (Huang, et
al, 2007) as special cases.
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A Class of Mean-Field Games in Vector Space OHIO

Mean Field Game Huang, Caines & Malhame TAC 07
“ N2 2
max E(V;(x;,u;) — ¢(%) - x; + G (%)) min E J e (e — %)+ 1(uge)”| dt
{ui} {ui,t}t 0
x; = fi(uy, wy) = (Ax L dw
Agent i {]E(xl-) € X, €U dx;: = (Aix;¢ + Biu;)dt + o;dw; ¢

Inner product h-q=j e Pth,q.dt
0

— . . — 1 N
u * = — . ;

X is the mean field: x D=1 Xi- min E||x;]|? + ||1%]|? — 2x; - X + r||u;]|?
u-

4

= Assumptions:
= X; is Hilbert space

2
= Vu € U; = E(x;) € X;, E(|Ix;]|") < €, where U; can be arbitrary vector space
= w; is a random element (measurable mapping)

= Mean field term ¢ () is Lipschitz continuous
= G(-) is Frechet differentiable

" Includes both deterministic (Grammatico, et al, 2016) and stochastic (Huang, et
al, 2007) as special cases.

12



Mean Field Equilibrium OHIO
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Mean Field Game (uj, ..., uy) is e-Nash equilibrium if

(uFu N> U (u: u’ - e T1.
r?ua}x [E(Vi(xi'ui) - Qb(f) ) xi) Ul(u“u_l) - U‘(u“u—l) +€V u; € Ul

| X; = ﬁ:(uilwi) Li(uil A) — [EVi(xil ui) —A- ]Exi
Agenti [E.X'l' € Xi, u; € Ui M:(A) = darg meal;( Li(ui,l)
Uj i

— Li(uy, 1) —x;] Mean Field Fixed Point Equations
N 1 . - - - - = = =-=-=-=-==-==" \
I Ly(uz,A) —>x; ¢<N[EZXL- )J { u; = arg max L;(u;, 4) l
I u;i€U; I
i o, _ N 1 . |
— LGy, D) = = filww) A= ¢GEDG) |

Theorem 1: The solution, (uj, ..., uy), to the mean-field equations is
an eyx-Nash equilibrium of the mean field game, and lim €y = 0.

N — o0

Unified result, more general than the literature »



OHIO

Mean Field Game to Social Welfare Optimization  Sarr
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Mean Field Game (uj, ..., uy) is e-Nash equilibrium if

(uFu N> U (u: u’ - e T1.
r?ua}x IIE:(Vi(xi'ui) - Qb(f) ) xi) Ul(ul'u_l) - U‘(u“u—l) +€V u; € Ul

xi = fi(ug, wy) Li(uy, A) = EVi(x;, u;) — A - Ex;
Agenti \Ex; € X;, u; € U; pi(A) = arg max L;(w;, 4)
['(z) + Az z* “virtual supplier”
— Ly(uy, ) — X _’P ) ]_> »P

. 1 1 > Ll(ulr/‘l) _’Xik 1

B L) —x; o(yoex) - SE()
—> Lz(uz,/l) _’x; N

A

— Ly(uy, 1) —xy

— Ly(uy,4) _’X;/

= View mean-field effect A as “price”

= Becomes standard social welfare problem: optimal price is “marginal” production cost

. 1
z* = %E(fo) A=T'(z2)=¢ G sz;> = (=70
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Social Welfare Optimization
Mean Field Game

N
I’?uCll}'X,' [E(Vl (xl-,ul-) — ¢(f) . xl-) ¢() =% F/() max }IE Zl Vi (xi'ui) - F(Z)
> =

{uq,.. uyN,z
<€

= filu,wy)
Agenti |Ex; € X;, u; € U; x; = fi(u, wy)
Ex; € X;,u; € U,z = N[E(in)

Theorem 2: If the above social optimization problem is strictly
convey, its solution coincides with the solution to mean-field
equations.

15



Main Results el
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Social Welfare Optimization
Mean Field Game

N
max E(V;(x, ;) — ¢(%) - x;) <¢(-) 1 p(,)) @max E ; Vi(xi, ;) — T'(2)

= filu,wy) B
Agenti |Ex; € X;, u; € U; x; = fi(u, wy)
Ex; € X;,u; € U,z = N[E(in)

= Significance:
= Connection between mean field equilibrium with social optimal solution
= Mean field equilibrium is socially optimal

= Social optimal solution is e-Nash

= Unified framework to study an important class of mean-field games

= Huang 03, Couillet 12, Bauso 14, Huang 10, Ma 12, Kamgarpour 13, Tembine 13, Grammatico 15,
Grammatico 16,

= Finding mean-field equilibrium is a convex optimization problem

16
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Mean-Field Equilibrium Computation SALE
Mean Field Game ugk) @(A<k>,2aix§"))
—_— Zaixl(k) > 1(k+1)

gy E(V;i (i uy) — (%) - x;) : i
i u](vk) \ /

) Xi = fi(uil Wi)
Agentl [E.X'l' € Xi, U; € Ui

“best response”

= Existing literature: either no computation or simple iterations

= (Grammatico, Gentile, Parise & John Lygeros 15), (Bauso 14), (Bagagiolo & Bauso
14), (Ma, Callaway & Hiskens 12), (Couillet, Perlaza, Tembine & Debbah 12),
(Parise, Colombino, Grammatico & Lygeros 14), (Paccagnan, Kamgarpour &

Lygeros 16) and (Deori, Margellos, & Prandini 16)

= In general, no convergence guarantees

= (Grammatico, Prise, Columbino, & Lygeros, TAC 16): Various conditions
on convergence for special linear quadratic cases

17



Mean-Field Equilibrium Computation O
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Social Welfare Optimization
Mean Field Game

N
o Y wexu -t
max E(V;(x, ;) — ¢(%) - x;) $() =110 @max 2, Vi(xi, ;) — T'(2)
= fi(uilwi) ¢ g
Agenti |Ex; € X;, u; € U; x; = fi(u, wy)
IExl- € Xl-,ul- € Ul',Z = N[E(Z?Cl)
. . T Dual Form ‘
= Existing iterative equilibrium
algorithms are essentially min max IE[Z(V (x;u;) —1-x)]—T(2) +1-Nz
prime dual (-t}
ul® o PO©Zaix() x; = fi(u, wy), vi=1,..,N
ye —\%C;AM Ex; € X;,u; € Uy, vi=1,..,N

“best response”

= Extensive literature on convex optimization can be used to facilitate
equilibrium computation (e.g. ADMM)

18



PEV Charging Example (Revisited) OHIO
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C dinat i _
O0raINator min  2a(Yw; + d)Tu; + 1 ||u; — ul|?
(Uj1,--UiT)

subject to: u; € U; = {ui,t >0,Y U = )’i}

N\ J

1

i Z)T,Znu — 2|’ +T(v2)

/

subject to: Ypu;(t) = ¥ NZlul =Z
\ J

= Qur algorithm: construct the social welfare optimization, and solve it via ADMM

= Benchmark algorithm (Grammatico 16): given z, derive u;, then update z

24 ' ' 26

23 —_p; ;
N Picard Banaph Iteration 24 —Picard Banach Iteration
<2 —Mann Iteration . ir —Mann Iteration
= —The Proposed Algorithm S 2 —The Proposed Algorithm
<Z‘5 21 §

Z.
20\L 20
% 50 100 150 200 '8 50 100 150 200

Iterations Iterations
19
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Social Welfare Optimization
Mean Field Game

I’?uCll}.;)C IE(Vl-(xl-,ul-) — ¢(f) . xl-) ¢() =% F/() max [E ; Vi(xi'ui) + F(Z)

{uq,.. uy,z}
= fi(uii Wi) <
Agenti |Ex; € X;, u; € U; x; = fi(u, wy)
Ex; € X;,u; € U,z = N[E(in)

Theorem 3 (Complete Connections):
unigueness

MFE is S.0. < S.0.is MFE

2 m
Existence of MFE < Strong Duality
N 7

¢ monotone I

Unigueness of MFE < Strictly Convex

o Recover and exten esult the literature
fgguls e ners

mono one:
= Novel perspective udy mean flelar games;

20
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Towards Cross-Layer Design R
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Aggregator

s

= Coordination of aggregation of DERs can reshape total power profile
= Market-based (Transactive)

= Direct load control

22



Towards Cross-Layer Design OHIO
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Other
Participants

= Coordination of aggregation of DERs can reshape total power profile

= Market-based (Transactive)

= Direct load control
= Need to interact with higher layer (e.g. whole sale market)

= Key: need a good aggregate asset model

= Understand how much we can modify the power profile

23



Towards Cross-Layer Design OHIO
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Power

Simplified model

Oth er gregr Pri-;e
Participants foz- L
e e - Bl —> Virtual battery model
L Aeentl | TAgent2 Tl

—> PDE/Markov Chain model

765 0325 025, 1
09
02 02 808
[=
= o7
015 015! _'0:03
:6[!5
74 0.1 01 %04
%Dﬁ
e 008 005 Eoz
73 01
It 200 a0 500 300 7000 W5 7a w5 74 s 5 5 7 5 P25 73 725 74 145 75 755 16 765 T g 2 s
Time (hr)
Air temperature evolution “ON” Distribution “OFF” Distribution Percentage of “ON” Units
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Towards Cross-Layer Design OHIO
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Power

Simplified model

Price

—> Virtual battery model

Other
Participants

—> PDE/Markov Chain model

= We developed a geometric approach for aggregate flexibility modeling
= Include virtual battery modeling as special cases
= Automate and optimize virtual battery modeling process

= Improve modeling performance

25



Geometric Approach for Aggregate Flexibility

= Individual asset dynamic model
xt(k) = a'x'(k — 1) + btul(k),

ul e |-ub,ul], xte|—xi xi]

= Individual power flexibility over [0, m]

ul(t) € [—ui_(t),ui(t)], .
Pl= {ui € R™| ul(t), x'(¢t) satisfy (1), } el P!

x'(t) € [—xL(£), x5 (D)]

= Aggregate power flexibility over [0, m]

P={ueR™ u=23:Nu, ulePt}

26

This is Minkowski sum: P = U?i
i
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Geometric Approach for Aggregate Flexibility STATE

= Calculation of the Minkowski sum of P! is NP hard

= Look for inner (sufficient) and outer (necessary) approximation of P

‘s.
-~
~
~
-~

PscPcCh,.

e —————

~
~~~
~
~

-

= Key Fact: Minkowski sum of homothets reduces to ordinary sum:

(B1Q + t1)D(B2Q + t2)=(B1+62)Q + (t1 + t3).

O Homothet:
dilation and translation of an object,

B0 +t O o VB>0,pQ+ti=(U:U = BE +1,¢ € Q)

27



Geometric Modeling Procedure OHIO
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= Modeling Procedure:
1. Choose a prototype polytope P,
2. Approximate each P! by the homothet of P,

3. Calculate the Minkowski sum of these homothetic approximations

Minimum Outer Appr. (MOA)

prototype , /’\\\ minimize f |
polytope subject to: BP, +t o P,
B >0,

Maximum Inner Appr. (MIA)

homothet

: , | maximize f
approximations

subject to: BP, +t c Pt
B >0,

= If P, is chosen from a virtual battery model, the resulting approximation
has a (virtual) battery interpretation

= Many existing virtual battery modeling methods are special cases .



Numerical Validations OHIO
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= 1000 residential HVACs
= Priority-stack-based tracking control of hybrid TCL models

= Regulation capacity: estimated using sufficient virtual battery model

g —
: =
2 =
= 5
5 :
o o
3 - -
) [
D_ 1 1 1 1 1 I
-5 : ' ' 0 600 1200 1800 2400 300p 3600
00:00 06:00 12:00 18:00 24:00 Time (s) I
Time (Hour) |
1
|
4| ----- B;: opt. suff. BI: subopt. suff. = = = B?: suff. [1,2]}—‘ =
< =
= 0.25F ] =
E e R — N
= >
N 2
£ of 12
e Ll
>
E) | e N e R m e n N R EEm o Em
© -0.25F 1 I
5 1 600 1200 1800 2400 30p0 3600
' ' ' Time (s) I
00:00 06:00 12:00 18:00 24:00 I
Time (Hour)

[1] He Hao, Borhan M. Sanandaji, Kameshwar Poolla, and Tyrone L. Vincent. Aggregate Flexibility of Thermostatically 29
Controlled Loads. IEEE Transactions On Power Systems, Vol. 30, No. 1, Jan. 2015
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= Part I: Mean field game is powerful tool for analyzing large games
= Mean field games < Social Welfare Optimization Problem

= Efficiency evaluation: Mean-field equilibrium coincides with social optimizer

= Existence, uniqueness, computation of MFE through optimization

= Part Il: Geometric Approach for Aggregate Flexibility Modeling

= Individual flexibility can be represented by power consumption set
(Polytope)

= Aggregate flexibility modeling can be viewed as approximating Minkowski
sum of heterogeneous polytopes

= Include virtual battery modeling as special case

30
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Thank you!
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